

CSCIT 2021 - Lecture 1

Clément Canonne (University of Sydney)

Estimation and hypothesis testing under information constraints

Contents of this lecture

- 1. What are learning and testing?
- 2. Baseline: the "centralised" setting
- 3. Beyond the centralised setting: 3 flavours
 - Private-coin protocols
 - Public-coin protocols
 - Interactive protocols
- 4. What are information constraints?
 - Two guiding examples: communication and privacy

Contents of this lecture

- 1. What are learning and testing?
- 2. Baseline: the "centralised" setting
- 3. Beyond the centralised setting: 3 flavours
 - Private-coin protocols
 - Public-coin protocols
 - Interactive protocols
- 4. What are information constraints?
 - Two guiding examples: communication and privacy

Standard statistical setting: n'id samples from some unknown probability distribution p

•

Standard statistical setting: n'id samples from some unknown probability distribution p

Goal: estimate something about p

Standard statistical setting: n iid samples from some unknown probability distribution p

Goal: estimate something about p

learn p: output p

such

 $\mathbb{E}[\ell(\hat{p},p)] \leq \varepsilon$

Standard statistical setting: n'id samples from some unknown probability distribution p Goal: estimate something about p

•
$$KL(p||q) = -\sum_{sc} p(sc) \log \frac{q(sc)}{p(sc)}$$

$$\chi^{2}(p,q) = \sum_{\infty} \frac{(p(sc) - q(sc))^{2}}{q(sc)}$$

•
$$TV(p,q) = \sup_{SUP}(p(S) - q(S)) = \frac{1}{2} \sum_{x \in SUP}(p(x) - q(x))$$

•
$$KL(p||q) = -\sum_{sc} p(sc) \log \frac{q(sc)}{p(sc)}$$

$$\chi^{2}(p,q) = \sum_{\infty} \frac{(p(sc) - q(sc))^{2}}{q(sc)}$$

$$TV(p,q) = \sup_{Sup}(p(S) - q(S)) = \frac{1}{2} \sum_{x \in Sup}(p(x) - q(x))$$

Standard statistical setting: n'id samples from some unknown probability distribution p

Goal: estimate something about p

Standard statistical setting: n iid samples from some unknown probability distribution p

Goal: estimate something about p

Learn a parameter/functional I of p

output O such that

$$\mathbb{E}\left[\ell(\hat{\theta},\theta(p))\right] \leq \varepsilon$$

Standard statistical setting: n'id samples from some unknown probability distribution p

Goal: estimate something about p

for instance, Learn a parameter/functional I of p

the mean of p

output I such that

 $\mathbb{E}\left[\mathbb{E}\left(\hat{\theta},\theta(p)\right)\right] \leq \varepsilon$

Standard statistical setting: n iid samples from some unknown probability distribution p

Goal: estimate something about p

Is p what I thought it was?

Standard statistical setting: n'id samples from some unknown probability distribution p

Goal: estimate something about p

Hypothesis: Ho= "p=q" (mull) If $z = (\sqrt{p_1q}) > \varepsilon''$ (altern.)

Output $b \in \{0,1\}$ st. $P\{b=1\} + \sup_{p \in [T]} P\{b=0\} \le \frac{1}{10}$

Standard statistical setting: n'id samples from some unknown probability distribution p

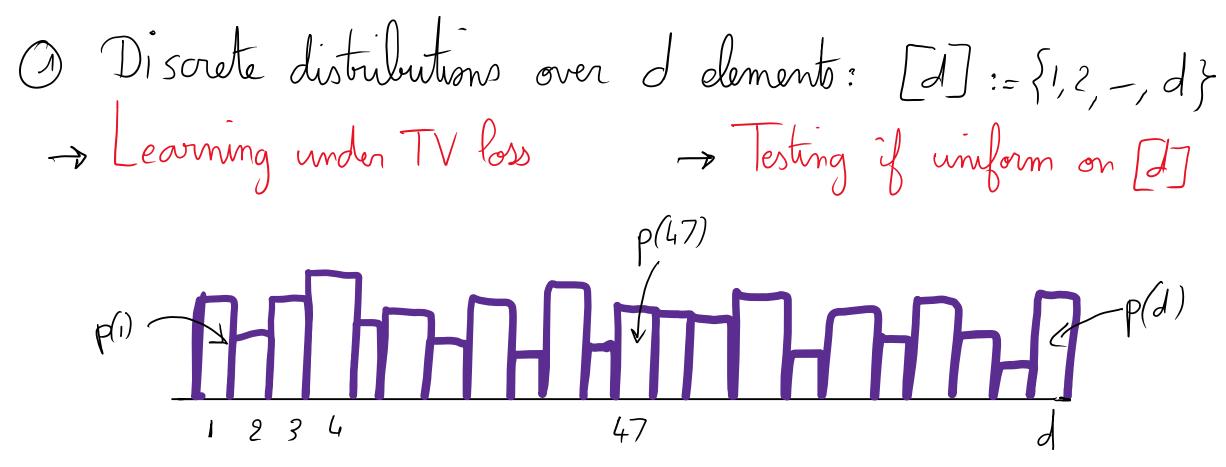
Goal: estimate something about p

Hypothesis: $H_0 = p = q'' \text{ (null)}$ $H_1 = \text{TV}(p,q) > \epsilon'' \text{ (altern.)}$

Output $b \in \{0,1\}$ st. $P\{b=1\}$ + sup $P\{b=0\} \le \frac{1}{10}$

Goal: estimate something about p The p=q" (mull)

The truly $f(p,q) > \varepsilon$ " (altern.) Output $b \in \{0,1\}$ st. $P\{b=1\} + \sup_{p \in [T]} P\{b=0\} \le \frac{1}{10}$ TYPE I



2) High-dimensional Gaussians (with identity covariance)

2 High-dimensional Gaussians (with islentity corrariance)

Learning the mean under le loss

Testing if the mean is zero (also l2)

 $X_{1}, X_{2}, -, X_{n}$ are fully accessible to the algorithm. How large must n be to solve the learning or testing question?

 $X_1, X_2, -, X_n$ op fully accessible to the algorithm. How large must n be to solve the learning or testing question? (as a function of d, ε)

"Minimax sample complexity"

Discrete distributions

 $d \gg 1$ $\varepsilon \in (0,1]$

Theorem. Learning an arbitrary pover [d] to TV loss & has sample complesaty.

Theorem. Testing if an arbitrary pover [d] is u or has TV(p,u)> E has sample complexaty.

Discrete distributions

 $d \gg 1$ $\varepsilon \in (0,1]$

Theorem. Learning an arbitrary pover [d] to TV loss ε has sample complexity $O(\frac{d}{\varepsilon^2})$.

Theorem. Testing if an arbitrary pover [d] is u or has $TV(p,u) > \varepsilon$ has sample complexaty.

Discrete distributions

d>>1 ε∈(0,1]

Theorem. Learning an arbitrary pover [d] to TV loss ε has sample complexity $O(\frac{d}{\varepsilon^2})$.

Theorem. Testing if an arbitrary pover [d] is u or has $TV(p,u) > \varepsilon$ has sample complexatly $O(\frac{\sqrt{d}}{\varepsilon^2})$.

Disorete distributions

d>>1 ε∈(0,1]

Proof.

dentity-covariance Gaussians

d>>1 ε∈(0,1]

Theorem. Learning the mean of an unknown $\mathcal{N}(\mu, \mathrm{Id})$ to ℓ_2^2 loss ϵ^2 has sample complexity ____.

Theorem. Testing if an unknown $N(\mu, Id)$ has $\mu = 0d$ vs. $\|\mu\|_2 > \varepsilon$ has sample complexity _____.

dentity-covariance Gaussians

 $d \gg 1$ $\epsilon \in (0,1]$

Theorem. Learning the mean of an unknown $\mathcal{N}(\mu, \mathrm{Id})$ to ℓ_2^2 loss ε^2 has sample complexity $\Theta(\frac{\mathrm{d}}{\varepsilon^2})$.

Theorem. Testing if an unknown $N(\mu, Id)$ has $\mu = 0d$ vs. $\|\mu\|_2 > \varepsilon$ has sample complexity _____.

dentity-covariance Gaussians

d>>1 ε∈(0,1]

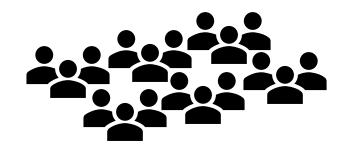
Theorem. Learning the mean of an unknown $\mathcal{N}(\mu, \mathrm{Id})$ to ℓ_2^2 loss ε^2 has sample complexity $\Theta(\frac{\mathrm{d}}{\varepsilon^2})$.

Theorem. Testing if an unknown $\mathcal{N}(\mu, \mathbb{I}_d)$ has $\mu = \mathcal{O}_d$ vs. $\|\mu\|_2 > \varepsilon$ has sample complexity $\Theta(\sqrt{\mathbb{I}_d})$.

dentity-covariance Gaussians

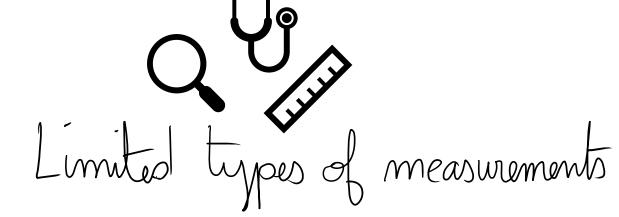
d>>1 ε∈(0,1]

Proof.



Distributed

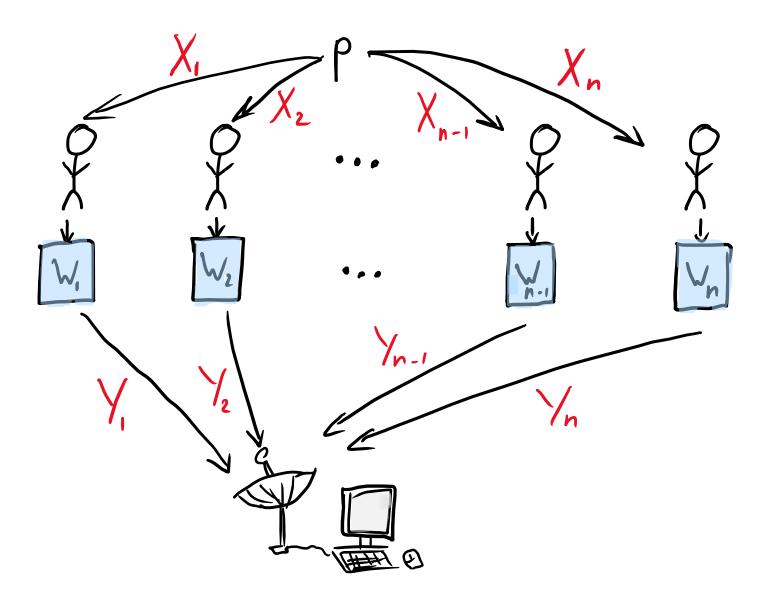
mormation or computational constraints



- n users, each holding one sample from (same) p
 One center, which has no sample but needs to solve the learning /testing task
 Each user can only send a "limited" type of message

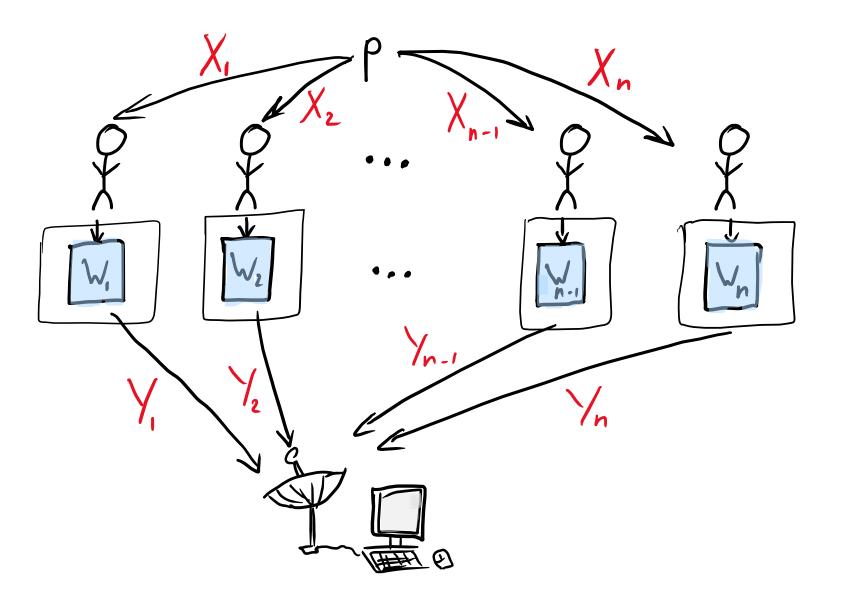
- n users, each holding one sample from (same) p
 One center, which has no sample but needs to solve the learning /testing task
 Each user can only send a "limited" type of message

"Pocal "constraint

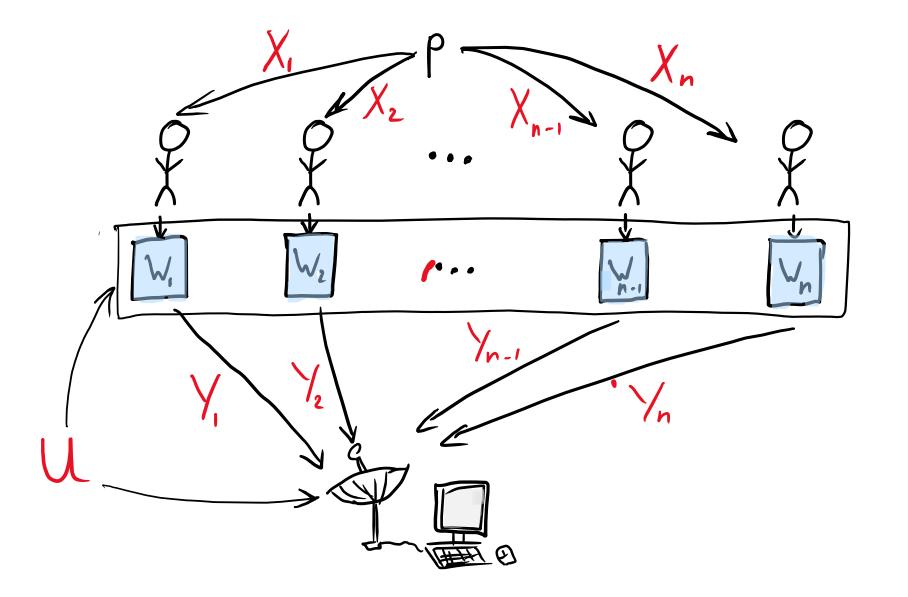


Channels W,,-, Wn EW

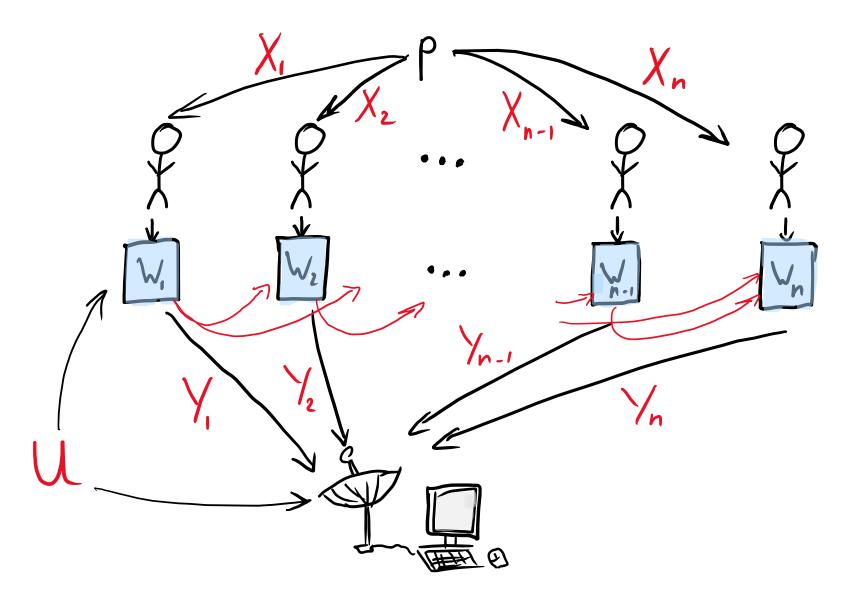
What happens if W contains the identity mapping.



Channels W,,-, Wn E W independently



Channels W,,-, Wn E W Jointly



Channels

Wii-, Wn E W

WE = W

Me-, YE-1

depends on previous

messages

(+ public randomner)

Implementation and deployment

Private-coin ≤ Public-coin ≤ Interactive

Sample complexity

Private-coin ≥ Public-coin ≥ Interactive

Two guiding examples of channel families

Communication

Local Privacy

Each user requires
$$\rho$$
-differential privacy

 $\forall y \in \mathcal{W}_{e}$
 $\forall y, x, x, x', \quad W(y|xc) \leq e^{\ell} W(y|xc')$

Two guiding examples of channel families

Communication

Local Privacy

Each user requires
$$e$$
-differential privary $\forall W \in W_e$
 $\forall y, x, x', W(y|x) \leq e^{2} W(y|x') \approx (1+e) W(y|x')$
(think of $e \in (0,1]$)

Two guiding examples of channel families

Communication

Can't send too much

Local Privacy

Can't reveal too much

Recap: this lecture

- What are learning and testing?
- 2. Baseline: the "centralised" setting
- 3. Beyond the centralised setting: 3 flavours
 - Private-coin protocols
 - Public-coin protocols
 - Interactive protocols
- 4. What are information constraints?
 - Two guiding examples: communication and privacy

Next lecture:

Learning and testing discrete distributions under those information constraints

