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Recap

A simplicial complex Y is a downward closed family of sets

e.g. Y = {F ⊆ E(G) | F is acyclic}

Level Y(k) = {F ∈ Y | |F| = k}

Down transition Dk from Y(k) to Y(k − 1) by dropping a random element

Up transition Uk from F′ ∈ Y(k − 1) to F ∈ Y(k) by choosing F ⊃ F′ with
probability proportional to w(F)

Theorem (Kaufman–Oppenheim [KO18])
UkDk has (one-sided) spectral gap at least 1/k for 1 ⩽ k ⩽ n − 1
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Skeleton

Given a simplicial complex Y, the 1-skeleton of Y is the graph with vertex
set Y(1) and edge set Y(2)
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Weighted simplicial complex

A distribution π on top layer Y(d) induces a distribution πk on Y(k) for any
k ⩽ d:

1. Draw F ∈ Y(d) from π

2. Uniformly discard all but k elements from F

Generalizes the typical definition for graphs (≡ 1-dimensional simplicial
complex)

A graph with weight π (i.e. total edge weight 1) has stationary distribution π1
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Random walk on simplicial complex

Theorem (Kaufman–Oppenheim [KO18])
UkDk has (one-sided) spectral gap at least 1/k for 1 ⩽ k ⩽ n − 1

Random walk on simplicial complex usually refers to transitions between
layers such as UkDk

In particular, when k = 2, U2D2 (Y(1) 7→ Y(2) 7→ Y(1)) coincides with the
lazy random walk transition on the 1-skeleton

Definition (Lazy random walk)
Given a random walk with transition P, its lazy version is:
• With probability 1/2, stay at the current vertex
• With probability 1/2, move according to P

UkDk is “high dimensional” lazy random walk
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Inner product for functions on graph

Commonly appear in analysis of random walk

Given weighted graph G, define inner product 〈·, ·〉G on V(G) → R by

〈f, g〉G = E
x∼π1

[f(x)g(x)]

Random walk transition matrix P yields the averaging operator

Pf(x) = E
y∼x

[f(y)]

P is self-adjoint wrt 〈·, ·〉G:

〈f,Pg〉G = 〈Pf, g〉G

(
= E

x∼y
[f(x)g(y)]

)
As a self-adjoint operator, P has |V(G)| real eigenvalues and orthogonal
eigenvectors (spectral theorem)
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Inner product for functions on simplicial complex

Extend the previous definition by considering the 1-skeleton of Y

Given weighted simplicial complex, define inner product 〈·, ·〉Y on Y(1) → R

〈f, g〉Y = E
x∼π1

[f(x)g(x)]

Random walk transition matrix P on the 1-skeleton yields

Pf(x) = E
(x,y)∼π2

[f(y)]

P is self-adjoint wrt 〈·, ·〉Y:

〈f,Pg〉Y = 〈Pf, g〉Y

(
= E

(x,y)∼π2
[f(x)g(y)]

)

As a self-adjoint operator, P has |Y(1)| real eigenvalues and orthogonal
eigenvectors (spectral theorem)
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Link

Given face F of simplicial complex Y, the link of F is the simplicial complex

YF = {H \ F | H ∈ Y,H ⊇ F}

If Y has weight π, then YF has weight πF, where

πF(H \ F) = π(H)

π(F)

Recall that πk is the random process of picking H ∼ π and dropping
elements

πF(H \ F) measures the conditional probability of getting F at the end, after
discarding H \ F

When Y is a matroid, YF is known as a contraction
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Oppenheim’s descent theorem

We will only consider one-sided spectral gap

Theorem (Oppenheim [Opp18])
Suppose pure simplicial complex Y with top layer Y(3) satisfies
• 1-skeleton of Y is connected
• Every link Yz for z ∈ Y(1) has spectral gap at least β

Then 1-skeleton of Y has spectral gap at least β

1 − β

The above theorem is used (with extra arguments) to prove

Theorem (Kaufman–Oppenheim [KO18])
UkDk has spectral gap at least 1/k for 1 ⩽ k ⩽ n − 1
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Bounding spectral gap

Let G be a weighted graph on n vertices

Its random walk transition matrix P has n real eigenvalues and orthogonal
eigenvectors wrt 〈·, ·〉G

Largest eigenvalue λ1 = 1 always, with right eigenvector 1

Second eigenvalue λ2 ⩽ λ is equivalent to 〈f,Pf〉 ⩽ λ〈f, f〉 whenever f ⊥ 1
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Descent of spectral gap

〈f, g〉Y = E
x∼π1

[f(x)g(x)] = E
(x,y)∼π2

[f(x)g(x)] = E
y∼π1

E
x∼Yy(1)

[f(x)g(x)]

= E
y∼π1

〈f, g〉Yy

Equate inner product over Y to (average of) inner products over links

〈Pf, g〉Y = E
(x,y)∼π2

[f(x)g(y)] = E
(x,y,z)∼π3

[f(u)g(z)] = E
z∼π1

E
(x,y)∼Yz(2)

[f(x)g(y)]

= E
z∼π1

〈Pzf, g〉Yz
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Spectral gap and variance decay

Let π be stationary distribution of graph G (not edge distribution anymore)

Define variance
Varπ(f) = Eπ[f 2]− Eπ[f ]2

Consider distribution µ = f π with density f (after some transitions of the
random walk)

Larger spectral gap implies stronger bound on the decay of variance (and
hence mixing time)

tmix ⩽
1
β
log

(
4
π∗

)
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Modified log-Sobolev constant

Define (relative) entropy

Entπ(f) = Eπ[f log f ]− Eπ[f ] logEπ[f ]

Given distribution µ = f π with density f

D(µ‖π) = Entπ(f)

Bobkov and Tetali defined modified log-Sobolev constant ρ to bound the
decay of entropy

Theorem (Bobkov–Tetali [BT06])

tmix ⩽
1
ρ

(
log log

1
π∗

+ log 32
)
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Modified log-Sobolev constant for bases-exchange walk

Theorem (Cryan–Guo–Mousa [CGM19])
The bases-exchange walk on a matroid of rank k has modified log-Sobolev
constant at least 1/k

This resulting mixing time bound is sharp for some matroid

Therefore sampling of spanning tree mixes in O(|V| log|V|) iterations

Building on this, Anari–Liu–Oveis Gharan–Vinzant [ALOGV20] gave another
bases-exchange algorithm to sample spanning tree in O(|E| log2|E|) time
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