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Background - 1

There is often a correlation between data that (most) people deem useful
or “sharable” and data that (most) people deem private or “protected”.

For example, (most) people consider their highest education degree
sharable or non-private. Let us call this variable X .

On the other hand, (most) people consider their income as private. Let us
call this variable S .

It is no secret that education and income are highly correlated. So if we
reveal X we may inevitably reveal something about S .

National census data may even be available on the joint distribution PS,X

between income and education.
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Background - 2

Between 50% to 80% of people in the US are uniquely identified by their
full DoB, ZIP code and sex.

Simple “anonymisation” of datasets and publishing them or using them in
training algorithms has a serious privacy risk.

One of the first examples: (to prove a point) Latanya Sweeney (crica
1995) [1] managed to hack into “anonymised” health records of the
Governor of Massachusetts by linking it with publicly available voter data.

Even today, reconstruction attacks occur on the so called “anonymised”
records.
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Background - 3

This is a big challenge for national data curators. The following example is
from a recent presentation by the US Census Bureau.

Source of slide: https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%
20Privacy%20for%20the%202020%20Census.pdf
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Background - 4

US Census in 2020: “Every person matters for federal funding.”

To preserve privacy: “Imaginary people will be added to some locations
and real people will be removed from others.”

“Minorities and rural areas are at most risk.”

https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.
html#commentsContainer
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Background - 5

A very popular privacy preserving method (e.g., in differential privacy) is
noise injection to the true data.
Significant under-reporting would have occurred if (Laplace) noise were to
be added to the true population count of native Americans in the 2010 US
Census. Vertical middle line is the 2010 Census data (source of truth);
Dots are noisy versions of different counties population.

https://www.nytimes.com/interactive/2020/02/06/opinion/census-algorithm-privacy.
html#commentsContainer
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Background - 6

It should be intuitively understood that there is a tradeoff between privacy
of individuals and utility (accuracy) of data.

Source of picture: https://simson.net/ref/2019/2019-07-16%20Deploying%20Differential%
20Privacy%20for%20the%202020%20Census.pdf
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Motivation - scenario 1

A student has done research on the distribution of education, sex, and age
versus postcode in a population of size n = 100.

The question is whether this student should publicise their results
unperturbed.

It should be clear that even if the unperturbed data is published
“anonymously”, it can lead to revealing or leaking information about
income of individuals in such a small dataset.

Randomised or deterministic perturbation of income data is required
before publication to reduce statistical disclosure.

Data perturbation will reduce (but not 100% eliminate) the guessing or
belief refining power of an adversary.
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Motivation - Scenario 1

The question is how to optimally perturb data to protect privacy AND
still provide accurate information.



ID Postcode Education
1 1000 PhD→?
2 1001 High School→?
3 1002 Bachelor→?
...

...
...

100 1000 Drop-out→?
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Motivation - scenario 2

Consider this toy example:

Each dot is “a (toy) dataset”: the outcome of votes of three people (who
chose between option 1 or 2).

Each edge connects two datasets differing only in one vote (neighbours).

Colour of the dot represents the true majority outcome Blue: majority 1 or
Red: majority 2.
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Motivation - scenario 2

The question is how should one release majority outcome while protecting
the privacy of individuals (who voted what).

Question: when trying to balance privacy of individuals with overall
accuracy of results which dataset(s) pose the most challenge?
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Motivation - scenario 2

With what probability shall we report the true majority?

Is 65% truthful response “good enough”? Is it “optimal”? What about
60%?

What do these probabilities mean in terms of privacy and accuracy overall?
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Privacy-preserving approaches

Some privacy-preserving approaches are explicitly statistical inference
oriented. They require knowledge of the distribution of the underlying
sensitive and useful data PS,X . One example is information-theoretic
mutual information and its variations or generalisations.

Some approaches aim to be “agnostic” to what the adversary may want
to “guess” and aim for a universal “data-statistics-free” approach to
minimise individual or group disclosure. One example is differential privacy
and its variations. Another one is maximal leakage.

They each have their own advantages and disadvantages.

All approaches are underpinned by information theory and statistics and
most of them can be studied and compared in a common framework.
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About this tutorial

The aim of these 3 lectures is to provide a basic understanding of some of
these privacy-preserving approaches, their relation, and formalisation of
their fundamental privacy-utility tradeoffs.

Due to time constraints, the main literature for the lectures is highly
selected.

A set of extra slides is provided at the end (after page ∼115) for
interested students or future reference.

Assumed knowledge for the main lectures: UG knowledge of probability
& statistics and a basic (trimester) course in information theory.
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Topics covered and outline

Model: variables, general privacy and utility measures, inference cost
model, optimisation framework (lecture 1).

Privacy funnel: mutual information measure for both privacy and utility,
basic optimisation setup, two greedy algorithms (lecture 1/2).

Local information privacy: log-lift or information density privacy
measure, its use in “local” privacy funnel, its use in privacy “watchdog”
method (lecture 2).

Differential privacy: basic definition, local differential privacy, their
relation to the two information-theoretic privacy measures above, a
graph-based (reasonable utility) optimal differential privacy scheme for
binary functions (lectures 2/3).
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Collaborators

Privacy funnel and privacy watchdog with Ni Ding and Thierry Rakotoarivelo
[2, 3].

Differential privacy on graphs with Rafael D’Oliveira and Muriel Médard, [4].

α-privacy watchdog with Ni Ding and Mohammad Amin Zarrabian, [5] (briefly
discussed in the extra slides).

Maximal leakage in index coding with Yucheng Liu, Ni Ding and Thierry
Rakotoarivelo, [6] (not discussed).

Maximal leakage in source/index coding with Yucheng Liu, Lawrence Ong, Phil
Yeoh, Sarah Johnson, Joerg Kliewer, [7], [8] (not discussed).

Differential privacy and low influence with Rafael D’Oliveira, Salman Salamatian,
and Muriel Médard, [9] (not discussed).
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Key references used for model section

[10]: du Pin Calmon and Fawaz 2012

[11]: Liao, Kosut, Sankar and du Pin Calmon, 2019

[12]: Wang, Basciftci and Ishwar, 2017
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Model - variables

s ∈ S: sensitive information to protect (e.g., race, political affiliation,
vote, income, disease).

x ∈ X : useful information to share (e.g., shopping history, education, etc).

Target application imposes the specific statistical data model:

PS,X

y ∈ Y: released variable based on X .
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Model - Markov chain, mechanism, PUT

Markov model

S → X → Y

The mechanism is specified by the conditional distribution PY |X .

Y should provide utility about X while protecting privacy by limiting the
information it reveals about S .

There is a privacy-utility trade-off (PUT).
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Numerical example - joint distribution PS,X

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398



Question: How should we make sense of this distribution in the context of
PUT?

Is there anything such as a safe or risky outcome (s, x)?
12

1From now on, we do not explicitly specify what S or X physically or logically represent.
2Probability cells are rounded.
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Privacy measure

The privacy of the mechanism is inversely quantified by a general privacy
leakage measure J(S ;Y ):

J : ∆|S|×|Y| → R≥0,

∆|S|×|Y| is the set of all joint probability distributions over S and Y.
The aim of privacy is to minimise J(S ;Y ).

J(S ;Y ) = 0 when perfect privacy is achieved.

The privacy measure need not be symmetric. That is, in general

J(S ;Y ) ̸= J(Y ; S).
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Utility measure

Utility is highly application-dependent.

The utility of the mechanism output Y about the useful information X is
inversely proportional by a general distortion measure D(PX ,Y ):

D : ∆|X|×|Y| ×X × Y → R≥0,

∆|X|×|Y| is the set of all joint probability distributions over X and Y .

The aim of utility or accuracy is to minimise D(PX ,Y ), which may not be
symmetric in X and Y .
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Distortion function examples

Normally, we are concerned with expected distortion:

D(PX ,Y ) = EPX,Y [d(X ,Y )],

for some hard distortion function

d : X × Y → R≥0.

This includes the probability of error

P(Y ̸= X ),

by choosing d(x , y) = 1[x ̸=y ] being the indicator function for the
condition X ̸= Y .

Choosing d(x , y) = − logPX |Y (x |y) gives the conditional entropy
D(PX ,Y ) = H(X |Y ).
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Optimisation framework

The privacy-utility optimisation problems is

ϵ∗(ρ) = inf
PY |X

J(S ;Y ),

s.t. D(PX ,Y ) ≤ ρ.

where according to S → X → Y we have

PY |S(y |s) =
∑
x∈X

PY ,X |S(y , x |s) =
∑
x∈X

PX |S(x |s)PY |X (y |x).

The privacy-centric optimisation formulation is

ρ∗(ϵ) = inf
PY |X

D(PX ,Y ),

s.t. J(S ;Y ) ≤ ϵ.
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Adversarial inference cost model

A (machine) learning adversary outputs a function that captures the belief
about S upon observing Y , denoted by PŜ|Y , according to

S → Y → Ŝ .

Denoting the loss by c(s, y ,PŜ|Y ) for each realisation s ∈ S and y ∈ Y,
the expected loss is

EPS,Y [c(S ,Y ,PŜ|Y )]

Then a (machine) learning adversary outputs a belief of S to minimise an
expected loss (also known as cost, risk or error).

P∗
Ŝ|Y = arg min

P
Ŝ|Y

EPS,Y [c(S ,Y ,PŜ|Y )].

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Adversarial inference cost model

By the same token, denoting the loss before observation of Y by c(s,PŜ)
for each realisation s ∈ S, the expected loss is

EPS [c(S ,PŜ)].

This leads to the optimal belief of S as

P∗
Ŝ = argmin

P
Ŝ

EPS [c(S ,PŜ)].

The privacy risk incurred by an adversary’s observation of Y is quantified
as the gain in the expected loss upon observing Y :

∆C = EPS [c(S ,PŜ)]− EPS,Y [c(S ,Y ,PŜ|Y )].
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Log-loss and mutual information

Log-loss with the observation of Y is defined as

clog(s, y ,PŜ|Y ) ≜ − log(PŜ|Y (s|y)).

Let us expand the expected loss

EPS,Y
[− log(PŜ|Y (s|y))] = −

∑
s,y

PS,Y (s, y) log(PŜ|Y (s|y))

= H(S|Y )

+
∑
y

PY (y)DKL(PS|Y (S |Y = y)∥PŜ|Y (S |Y = y))︸ ︷︷ ︸
minimised when P

Ŝ|Y=y
= PS|Y=y

.

Therefore, the optimal inference strategy (resulting in zero KL divergence) is the true
posterior P∗

Ŝ|Y = PS|Y .
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Log-loss and mutual information

Similarly, without the observation of Y , the log-loss is

clog(s,PŜ) = − log(PŜ(s)).

And its expectation is

EPS [− log(PŜ(s))] = −
∑
s

PS(s) log(PŜ(s))

= H(S) + DKL(PS∥PŜ).

Therefore, the optimal inference strategy without Y is the true prior P∗
Ŝ
= PS .
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Log-loss and mutual information

Mutual information as a symmetric privacy measure

Therefore, the gain in the expected loss upon observing Y is simply

JMI(S ;Y ) = I (S ;Y ) = H(S)− H(S |Y ) = I (Y ;S) = JMI(Y ; S).
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Key references used for the privacy funnel section

[13]: Makhdoumi, Salamatian, Fawaz and Médard, 2014 (see also its
extended 2020 online version)

[14]: Naftali, Pereira and Bialek, 2000

[2]: Ding and Sadeghi, 2019
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Privacy funnel (PF) - basic setup

Problem formulation

Both privacy and utility are measured through mutual information:

min
PY |X

JMI(S ;Y ) = I (S ;Y ),

s.t. I (X ;Y ) ≥ θ.

Equivalent (distortion-based) formulation: D(PX ;Y ) = H(X |Y ) (noting
that H(X ) is fixed)

min
PY |X

JMI(S ;Y ) = I (S ;Y ),

s.t. H(X |Y ) ≤ ρ = H(X )− θ.
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Numerical example

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398


Originally, without any perturbation (Y = X )

I(S;X) = 0.2233; I(X;Y) = H(X) = 3.11.

Question is can we bring I (S ;Y ) lower while not affecting I (X ;Y ) “too
much”?

For this, we need to understand the nature of the optimisation problem.
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Privacy funnel and information bottleneck (IB)

Duality with information bottleneck

Markov chain: U → X → Y .

U is the underlying useful data (e.g., features of an image to be learned),
X represents U in the physical world (a digital image) and Y is a
compressed version of X .

min
PY |X

I (X ;Y ),

s.t. I (U;Y ) ≥ µ.

The objective is to maximise the compression rate while maintaining a
good level of information left between U and Y .

This is the opposite of the privacy funnel optimisation and is a generalised
rate-distortion problem with three variables connected via a Markov chain.
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Optimisation challenges

Challenge

Both privacy funnel and information bottleneck problems are non-convex
problems:

The objective function say, I (S ;Y ) in PF is a convex function of PY |X
(since PY |S is a linear function of PY |X ): Good

However, the constraint region is not convex, e.g., I (X ;Y ) ≥ θ is not a
convex set in the PF method: Bad .

We know that the optimum size of Y is upper bounded as |Y| ≤ |X |+ 1
(see extended [13]).
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PF optimisation methods

Prevalent methods in the literature

Iterative expectation-maximisation (EM) method (unlike the
Blahut-Arimoto algorithm, converge to the global optimum is not
guaranteed).

Greedy/heuristic pairwise symbol merging algorithms.

Iterative (general) merging based on the Lagrange method and a
submodularity-based structure in the problem.

Converting the privacy constraint to linear local (stronger) constraints
based on local differential privacy or local information privacy ⇒ a
convex problem. This will be discussed in lecture 2.
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Merging-based algorithms

Greedy pairwise merging idea/example

A lower bound θ on I (X ;Y ) and PS,X are given.

Start with initial useful symbols. Example:

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

While I (X ;Y ) ≥ θ, iteratively merge two symbols in X that results in the
largest reduction of I (S ;Y ) (through exhaustive pairwise checks).

Example of merged symbols x1, x8 at iteration 1:

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9},W 1 = {x1, x8} ⇒ X̃ 1 = {x1x8, x2, x3, x4, x5, x6, x7, x9}

Complexity of each iteration O(|X |2).
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Numerical example

Let θ = 0.7H(X ) ≈ 2.17

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398


Merging means adding up corresponding columns.

PS,X 1 (s, x̃1) =

0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0711 0.0134

0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0521 0.0022

0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0402 0.0047

0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0456 0.0398


This results in Y = X̃ 1

I(S; X̃1) = 0.1637; I(X; X̃1) = 2.9127.
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Numerical example

Mechanism is very simple.

Whenever, x = x1 OR x = x8, output the OR super symbol x̃ = x1x8.

E.g., the released data Y will say the customer bought either product 1 or
product 8.

PY |X (y |x) =



− x2 x3 x4 x5 x6 x7 x1x8 x9

x1 0 0 0 0 0 0 1 0
x2 1 0 0 0 0 0 0 0
x3 0 1 0 0 0 0 0 0
x4 0 0 1 0 0 0 0 0
x5 0 0 0 1 0 0 0 0
x6 0 0 0 0 1 0 0 0
x7 0 0 0 0 0 1 0 0
x8 0 0 0 0 0 0 1 0
x9 0 0 0 0 0 0 0 1
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Numerical example

Initial useful symbols

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

At iteration 1, optimal W 1 = {x1, x8}
X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} ⇒ X̃ 1 = {x2, x3, x4, x5, x6, x7, x1x8, x9}

I (S ; X̃ 1) = 0.1637; I (X ; X̃ 1) = 2.9127.

At iteration 2, optimal W 2 = {x3, x9}
X̃ 1 = {x2, x3, x4, x5, x6, x7, x1x8, x9} ⇒ X̃ 2 = {x2, x4, x5, x6, x7, x1x8, x3x9}

I (S ; X̃ 2) = 0.1073; I (X ; X̃ 2) = 2.7500.

At iteration 3 optimal W 3 = {x4, x6}
X̃ 2 = {x2, x4, x5, x6, x7, x1x8, x3x9} ⇒ X̃ 3 = {x2, x5, x4x6, x7, x1x8, x3x9},

I (S ; X̃ 3) = 0.0516; I (X ; X̃ 3) = 2.4853.

At iteration 4 optimal W 4 = {x2, x5} (last iteration)

X̃ 3 = {x2, x5, x4x6, x7, x1x8, x3x9} ⇒ X̃ 4 = {x2x5, x4x6, x7, x1x8, x3x9},

I (S ; X̃ 4) = 0.0286; I (X ; X̃ 4) = 2.2788.
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Merging algorithm based on submodularity properties

Lagrange function formulation

LPF(PY |X , λ) = I (S ;Y )− λI (X ;Y ).

For each λ the optimal solution is a boundary point of the PF problem.

min
PY |X
{I (S ;Y )− λI (X ;Y )}.

However, this is as complex as the original problem.
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Merging algorithm based on submodularity properties

Iterative merging-based Lagrange function optimisation

We start with the original set X .

We want to find the best subset W of X for merging (not necessarily
pairwise merging where |W | = 2) as follows:

W ∗ = argmin{I (S ; X̃ )− λI (X ; X̃ ) : W ⊂ X},

where X̃ = (X \W ) ∪ W̃ and W̃ means merge ALL symbols in W .

After finding W ∗, update X ← (X \W ∗) ∪ W̃ ∗ and start over.

The question is how to find the best W , where exhaustive search is
obviously exponential in |X | and out of the question.
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Merging algorithm based on submodularity properties

Theorem

[2] In each iteration of finding the best merging solution is equivalently
described:

argmin{I (S ; X̃ (k))− λI (X ; X̃ (k)) : W ⊂ X̃ (k−1)}
= argmin{(1− λ)f (W )− g(W ) : W ⊂ X̃ (k−1)}

where f , g are submodular and non-increasing functions defined as

f (W ) ≜
∑
x∈W

p(x) log
p(x)∑

x∈W

p(x)︸ ︷︷ ︸
merging symbols in W .

,

g(W ) ≜
∑
s∈S

∑
x∈W

p(s, x) log
p(s, x)∑

x∈W

p(s, x)︸ ︷︷ ︸
merging symbols in W .

.
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Merging algorithm based on submodularity properties

Optimisation tool

argmin{I (S ; X̃ (k))− λI (X ; X̃ (k)) : W ⊂ X̃ (k−1)}
= argmin{(1− λ)f (W )− g(W ) : W ⊂ X̃ (k−1)}

For 0 ≤ λ ≤ 1, the optimisation problem is minimisation of the difference of
two submodular functions (MDSF) (1− λ)f (W ) and g(W ).

There are (suboptimal) polynomial-time toolboxes for greedily solving such
problems in the ML literature.

Convergence to global optimal is not guaranteed, but performance can be
better than pairwise merging.

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Numerical results

Dataset: Asuncion et al, UCI ML repository.
Sensitive Variables: {Age, Sex}.
Useful Variables = {Sex, Cholesterol}.

λ = 0.8

Convergence performance using the submodularity-based merging.

Experimental Results
Database [5]3: heart disease data created by Hungarian
Institute of Cardiology.

IAC-MDSF: min{I (S ; X̂
(k)
W ) � �I (X̂ (k); X̂

(k)
W ) : W ✓ X̂ (k)} for PF;

max{I (S ; X̂
(k)
W ) � �I (X̂ (k); X̂

(k)
W ) : W ✓ X̂ (k)} for IB.

Result #1: Convergence
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and � = 0.8.
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3Asuncion et. al 2007: UCI machine learning repository.
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Numerical results

Dataset: Asuncion et al, UCI ML repository.
Sensitive Variables: {Age, Sex}.
Useful Variables = {Sex, Cholesterol}.

λ = 0.8

Convergence performance using pairwise merging is much slower.

that is practically fast although the asymptotic complexity is
unknown. Alternatively, one can implement [9, Algorithm 3]
that calls a modular function minimization algorithm with
complexity O(|X̂ (k)|) in each iteration. In addition, MDSF
is still an active research topic in combinatorial optimizations.
There might be some development in this topic in the future
that can be applied to Algorithm 1 to improve the performance
(e.g., a faster convergence to a better local optimum).

V. CONCLUSION

We considered the problem of how to determine a de-
terministic solution p(x̂|x) 2 {0, 1} for the PF problem
minp(x̂|x) I(S; X̂) s.t. I(X; X̂) � ✓U. We proposed an IAC-
MDSF algorithm that generates a deterministic transition
p(x̂|x) and an alphabet X̂ by iteratively merging elements
in X . Our IAC-MDSF algorithm differs from the existing
algorithms in [4] in that it searches the optimal merge over all
subsets, instead of all pairwise combinations, of the current
alphabet and this problem is proved to be an MDSF, a local
optimum of which could be obtained in polynomial time.
Experimental results showed that our IAC-MDSF algorithm
generally outperforms the pairwise merge algorithm in [4] in
much fewer iterations.

While the IAC-MDSF algorithm only searches a determinis-
tic solution for the PF problem, it is worth understanding in the
future how to search an optimal soft transition p(x̂|x) 2 [0, 1]
over the probability simplex, e.g., by the deterministic anneal-
ing method [15], and whether this soft solution can improve
the Pareto frontiers in Fig. 3. On the other hand, as explained
in Section IV-C, it would be of interest to see if we can
utilize better MDSF algorithms to improve the performance
and complexity of the IAC-MDSF algorithm.

APPENDIX A
PROOF OF THEOREM 1

Proof: We have (4) hold since

I(S; X̂(k)) � I(S; X̂
(k)
W )

=
X

s2S

X

x̂(k)2W

p(s, x̂(k))
⇣

log
p(s, x̂(k))

p(s)p(x̂(k))
� log

p(s, Ŵ )

p(s)p(Ŵ )

⌘

= g(W ) � f(W )

so that I(S; X̂
(k)
W ) = I(S; X̂(k)) � g(W ) + f(W ) and

I(X̂(k); X̂
(k)
W )

= �
X

x̂(k) /2W

p(x̂(k)) log p(x̂(k)) �
X

x̂(k)2W

p(x̂(k)) log p(Ŵ )

= H(X̂(k)) + f(W ).

For function l = u(t(W )), if t is a modular (both sub-
modular and supermodular) set function such that t(W ) =P

i2W ti, 8W ✓ V for the vector t 2 R|V |
+ and u : R 7! R

is convex, l is supermodular [16, Proposition 37]. Then,
�l is submodular. Rewrite f(W ) =

P
x̂(k)2W log p(x̂(k)) �

p(Ŵ ) log p(Ŵ ). Here,
P

x̂(k)2W log p(x̂(k)) is modular. Since
p(W ) is nonnegative and modular and �y log y is convex in y,

20 40 60 80 100 120 140

2

4

6

8

iteration index k

I(S; X̂(k)) generated by [4, Algorithm 1] for PF
I(X; X̂(k)) generated by [4, Algorithm 2] for IB

Fig. 4. The convergence of I(S; X̂(k)) and I(X; X̂(k)) for [4, Algorithm 1]
and [4, Algorithm 2], respectively, on the Hungarian heart disease data set in
[11] with S = {‘age’, ‘sex’} and X = {‘sex’, ‘cholesterol’}.

�p(W ) log p(W ) is submodular. Therefore, f is submodular.
Also, for all W ✓ Y ,

f(W ) � f(Y ) =
X

x̂(k)2W

p(x̂(k)) log
p(Ŷ )

p(Ŵ )

�
X

x̂(k)2Y \W

p(x̂(k)) log
p(x̂(k))

p(Ŷ )
� 0.

In the same way, we can prove that g is submodular and
nonincreasing.
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Numerical results

Dataset: Asuncion et al, UCI ML repository.
Sensitive Variables: {Age, Sex}.
Useful Variables = {Sex, Cholesterol}.
Each point corresponds to a different λ ∈ [0, 1] ⇒ PUT boundary point.
Privacy-utility tradeoff performance using the submodularity-based
merging is better.

Experimental Results
Result #2: Pareto Frontier, privacy leakage I (S ; X̂ ) vs.
utility loss �I (X ; X̂ ), as the privacy-utility tradeo↵ (PUT).

Fact: all achievable pairs I (S ; X̂ ) and �I (X ; X̂ ) can be searched
by minp(x̂ |x) L(p(x̂ |x),�), 8� � 0.

�1 �0.8 �0.6 �0.4 �0.2 0
0

0.2

0.4

0.6

0.8

utility loss �I (X ; X̂ )/H(X )

pr
iv

ac
y

le
ak

ag
e

I(
S
;X̂

)/
H

(S
)

IAC-MDSF for PF
pairwise merge from the literature
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Key references used for local information privacy, local privacy funnel and
privacy watchdog
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Motivation for local information privacy measure (log-lift)

Let us revisit the mutual information between sensitive variable S and
released variable Y

I (S ;Y ) = H(S) + H(Y )− H(S ,Y ) = H(S)− H(S |Y )

=
∑
s∈S

∑
y∈Y

PS,Y (s, y) log
PS,Y (s, y)

PS(s)PY (y)

=
∑
s∈S

∑
y∈Y

PS,Y (s, y) log
PS|Y (s|y)
PS(s)

= EPS,Y

[
log

PS|Y
PS

]
.

Each term
PS|Y (s|y)

PS (s)
captures the adversary’s local gain in terms of decrease

or increase in the likelihood of the realisation s ∈ S upon the realisation
y ∈ Y.
Mutual information I (S ;Y ) is the average of this gain.
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Motivation for local information privacy measure (log-lift)

Instead of managing the average gain I (S ;Y ), let us control the
worst-case gain.

I (S ;Y ) = H(S)− H(S |Y )

=
∑
s∈S

∑
y∈Y

PS,Y (s, y) log
PS|Y (s|y)
PS(s)

= EPS,Y

[
log

PS|Y
PS

]
.

So in this lecture, we will mostly focus on the local information privacy
(LIP) measure, how it can be used in privacy-utility tradeoff (PUT)
optimisation, and how it relates to other measures such as differential
privacy.
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Local information privacy measure (log-lift)

Define lift and log-lift (or the information density), respectively, as follows:

ℓ(s, y) = ℓ(y , s) ≜
PS,Y (s, y)

PS(s)PY (y)
=

PS|Y (s|y)
PS(s)

=
PY |S(y |s)
PY (y)

, s ∈ S, y ∈ Y,

i(s, y) = i(y , s) ≜ log ℓ(s, y) = log ℓ(y , s), s ∈ S, y ∈ Y,

It is a symmetric measure ℓ(s, y) = ℓ(y , s).

Recall, mutual information I (S ;Y ) is the average of information density

I (S ;Y ) = EPS,Y [i(S ,Y )].

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Example - joint distribution

Recall the joint distribution in our running example. Let us see with no perturbation
(that is, when X = Y ) what sorts of log-lift we get.

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398
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Example - log-lift

log ℓ(s, x) = log
PS|X (s|x)
PS (s)

=



0.009 0.32 0.07 0.31 −0.76 −0.09 −0.10 0.35 −0.27

0.43 −1.21 0.40 −0.03 0.33 −2.68 0.33 −0.65 −1.74

−1.56 −0.20 −1.44 0.42 0.15 0.44 0.27 0.71 −1.03

0.18 0.24 0.14 −1.53 0.11 0.31 −0.59 −2.60 0.87



Red values highlight the lowest negative and highest positive log-lifts.

A very negative value log
PS|X (s|x)

PS (s)
means we can (almost) eliminate

outcome s after observing x .

A very large positive value log
PS|X (s|x)

PS (s)
means we can be (almost) certain s

has occurred after observing x .
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Local information privacy measure (log-lift)

Local information privacy is point-wise defined as

Jsym
LIP (S ;Y ) = max

s∈S,y∈Y

∣∣∣∣log(PS|Y (s|y)
PS(s)

)∣∣∣∣ .
In saying, we will sometimes refer to this as (maximum) absolute log-lift
((max-)abs-log-lift for short).

Note that

Jsym
LIP (S ;Y ) ≤ ϵ ⇔ e−ϵ ≤

(
PS|Y (s|y)
PS(s)

)
≤ eϵ.
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Example - JsymLIP (S ;Y )

log ℓ(s, x) = log
PS|Y (s|y)
PS (s)

=



0.009 0.32 0.07 0.31 −0.76 −0.09 −0.10 0.35 −0.27

0.43 −1.21 0.40 −0.03 0.33 −2.68 0.33 −0.65 −1.74

−1.56 −0.20 −1.44 0.42 0.15 0.44 0.27 0.71 −1.03

0.18 0.24 0.14 −1.53 0.11 0.31 −0.59 −2.60 0.87



−2.68 ≤ log

(
PS|Y (s|y)
PS(s)

)
≤ 0.87

⇒ Jsym
LIP (S ;Y ) = max

s∈S,y∈Y

∣∣∣∣log(PS|Y (s|y)
PS(s)

)∣∣∣∣ = 2.68.
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Extension: asymmetric local information privacy

Upper LIP

JULIP(S ;Y ) = max
s∈S,y∈Y

log

(
PS|Y (s|y)
PS (s)

)
.

It is meant to measure largest gain in inference (guessing capability).

Lower LIP

JLLIP(S ;Y ) = min
s∈S,y∈Y

log

(
PS|Y (s|y)
PS (s)

)
= − max

s∈S,y∈Y
log

(
PS (s)

PS|Y (s|y)

)
.

This capture the largest reduction in the likelihood of s after observation of y .

Relation of Symmetric LIP to Upper and Lower LIP

JsymLIP (S ;Y ) = max{JULIP(S ;Y ), |JLLIP(S ;Y )|}.
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Extension: asymmetric local information privacy

Note that for ϵu, ϵl ≥ 0, we have{
JU
LIP(S ;Y ) ≤ ϵu

JL
LIP(S ;Y ) ≥ −ϵl

⇔ e−ϵl ≤
(
PS|Y (s|y)
PS(s)

)
≤ eϵu
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Upper local information privacy implies mutual information privacy

Lemma

JU
LIP(S ;Y ) implies JMI(S ;Y ). That is

JU
LIP(S ;Y ) ≤ ϵu ⇒ JMI(S ;Y ) ≤ ϵu.

Proof.

Simple: worst-case upper bound implies average upper bound.

JU
LIP(S ;Y ) ≤ ϵu ⇒ i(s, y) = log

(
PS|Y (s|y)
PS(s)

)
≤ ϵu, s ∈ S, y ∈ Y

⇒ I (S ;Y ) =
∑
s,y

PS,Y (s, y) log

(
PS|Y (s|y)
PS(s)

)
≤ ϵu.

Note that we do not need a bound on the lower LIP in the above to deduce a
bound on the mutual information privacy measure.
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Local privacy funnel

Recall the (privacy-centric) privacy funnel problem

max
PY |X

I (X ;Y )

s.t. JMI(S ;Y ) = I (S ;Y ) ≤ ϵ.

The idea of local privacy funnel is to maximise utility I (X ;Y ) (or
equivalently minimise distortion H(X |Y )) subject to local information
privacy (LIP) constraints, which we now know imply mutual information
privacy.
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Local privacy funnel

Optimisation

max
PX|Y ,PY

I (X ;Y )

s.t. normal probability axioms and consistencies

PY (y) ≥ 0, ∀y ∈ Y, PX |Y (x |y) ≥ 0, ∀x ∈ X , y ∈ Y,∑
y

PX |Y (x |y)PY (y) = PX (x), ∀x ∈ X ,

∑
x

PX |Y (x |y) = 1, ∀y ∈ Y,

AND also s.t. SYMMETRIC LIP conditions

e−ϵPS(s) ≤
∑
x

PS|X (s|x)PX |Y (x |y)︸ ︷︷ ︸
PS|Y (s|y), S→X→Y ,

≤ eϵPS(s), ∀s ∈ S, y ∈ Y.
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Local privacy funnel

Optimisation solution structure

Let ∆ be the convex, closed, bounded, non-negative polytope in R|X| with
elements denoted by v = (v1, v2, · · · , v|X|) ∈ ∆. That is,

∆ = {v ∈ R|X|
≥0 :

∑
x

vx = 1, e−ϵP(s) ≤
∑
x

P(s|x)vx ≤ eϵP(s), ∀s ∈ S}.

Note coordinate v represents PX |Y=y for a fixed y subject to
JLIP(S ;Y ) ≤ ϵ conditions.
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Local privacy funnel

Optimisation solution structure

Let V = {v1, v2, · · · , vM} be the vertices of the convex polytope ∆, where
vi = (vi,1, vi,2, · · · , vi,|X|) is the i-th vertex.

For each vi ∈ V, its entropy (representing H(X |Y = y) for a fixed y) is:

H(X |Y = y) = H(vi ) = −
∑
x∈X

vi,x log vi,x .

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Local privacy funnel

Optimisation solution structure

Note once the vertices V of ∆ are found, H(vi ) is fixed for all i ∈ M.

Let y∗ = (y∗
1 , y

∗
2 , · · · , y∗

M) be the solution to the following linear
programming problem:

min
y∈RM

∑
i∈[M]

H(vi )yi , (minimise H(X |Y )⇒ maximise I (X ;Y ))

s.t. yi ≥ 0, ∀i ∈ [M],

∑
i∈[M]

vi,xyi = pX (x), ∀x ∈ X , (consistency with probability PX ).
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Local privacy funnel

Theorem

[16]:

Then the mechanism that maximises I (X ;Y ) subject to JLIP(S ;Y ) ≤ ϵ is
given by:

Y∗ = {i ∈ [M] : y∗
i > 0}, mixing coeff of active vertices

P∗
Y (Y = i) = y∗

i , ∀i ∈ Y∗,

P∗
X |Y (X = x |Y = i) = vi,x , ∀i ∈ Y∗ coord. of active vertices of ∆.

Furthermore, |Y∗| ≤ |X |.
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Local privacy funnel

Remaining drawbacks

The worst-case complexity of finding all vertices of convex ϵ− JLIP region
∆ is exponential with |X |.

The final optimal solution is the solution to a linear program and one
cannot draw much insight from it.
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Privacy watchdog

Idea

Takes a targeted approach to first categorise symbols x ∈ X based on
their worst-case local information (LIP) value

max
s∈S
| log ℓ(s, x)| = max

s∈S

∣∣∣∣log P(s|x)
P(s)

∣∣∣∣.
And then sanitise those elements in X whose maxs∈S | log ℓ(s, x)| is larger
than a desired ϵ threshold.

The privacy watchdog operation is easy to understand and also easy to
implement with excellent privacy guarantees as we show next.
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Privacy watchdog

Example - joint distribution

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398
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Privacy watchdog

Example - log-lift

log ℓ(s, x) =

0.009 0.32 0.07 0.31 −0.76 −0.09 −0.10 0.35 −0.27

0.43 −1.21 0.40 −0.03 0.33 −2.68 0.33 −0.65 −1.74

−1.56 −0.20 −1.44 0.42 0.15 0.44 0.27 0.71 −1.03

0.18 0.24 0.14 −1.53 0.11 0.31 −0.59 −2.60 0.87



where red values highlight the lowest negative and highest positive log-lifts.
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Privacy watchdog

Example - absolute log-lift

As an example, let us set ϵ = 1 as our symmetric local information privacy
target (for abs-log-lift).

| log ℓ(s, x)| = |i(s, x)| =

0.0093 0.3298 0.0710 0.3169 0.7614 0.0983 0.1024 0.3598 0.2723

0.4383 1.2163 0.4017 0.0391 0.3369 2.6855 0.3308 0.6598 1.7406

1.5647 0.2054 1.4484 0.4227 0.1537 0.4449 0.2731 0.7189 1.0352

0.1809 0.2419 0.1418 1.5348 0.1178 0.3127 0.5935 2.6078 0.8747



where red values highlight (s, x) pairs whose abs-log-lift > ϵ = 1.

Xϵ = {x ∈ X : |i(s, x)| ≤ ϵ, ∀s ∈ S} low-risk symbols

Xϵc = X \ Xϵ high risk symbols.
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Optimal privacy watchdog mechanism

The general mechanism structure

P(y |x) =


1{x=y} x , y ∈ Xϵ, (no sanitisation required)

R(y |x) x , y ∈ X c
ϵ , (sanitisation required)

0 otherwise.

where ∑
y∈Xϵc

R(y |x) = 1, x ∈ Xϵc

Question: What is the optimal R∗(y |x)?

We will focus on bringing the abs-log-lift down to lowest possible value and see
what happens to utility: privacy-centric approach.
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Optimal privacy watchdog mechanism

The general mechanism properties

i(s, y) ≜ log

(
P(s, y)

P(s)P(y)

)
= log

(
P(y |s)
P(y)

)
= log

(
P(s|y)
P(s)

)
Recall S → X → Y :

i(s, y) = log

(
P(y |s)
P(y)

)
= log

(∑
x∈X c

ϵ
P(y |x)P(x |s)∑

x∈X c
ϵ
P(y |x)P(x)

)
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Optimal privacy watchdog mechanism

An X -invariant mechanism structure

An X -invariant mechanism RY |X (y |x) = R(y) for all x , y ∈ X c
ϵ .

i(s, y) = log

(
P(y |s)
P(y)

)
= log

(∑
x∈X c

ϵ
P(y |x)P(x |s)∑

x∈X c
ϵ
P(y |x)P(x)

)

= log

(∑
x∈X c

ϵ
R(y)P(x |s)∑

x∈X c
ϵ
R(y)P(x)

)

= log

∑
x∈Xϵc

P(x |s)∑
x∈Xϵc

P(x)
.
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Optimal privacy watchdog mechanism

Merging high-risk symbols is an example of X -invariant mechanism

Xϵ = {x ∈ X : |i(s, x)| ≤ ϵ, ∀s ∈ S} low-risk symbols released wo perturbation

Xϵc = X \ Xϵ high risk symbols are all merged into y∗.

p(y |x) =



y∗

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
...

...
0 0 0 0 0 0 1 0 0


PY |X (y |x) = R(y) = 1, y = y∗, x ∈ X c

ϵ
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Optimal privacy watchdog mechanism

We say that the randomisation mechanism p(y |x) attains (ϵ′,X c
ϵ )-log-lift if

|i(s, y)| =
∣∣∣ log p(y |s)

p(y)

∣∣∣ ≤ ϵ′, ∀y ∈ X c
ϵ , s ∈ S.

The question is what is the best ϵ′ for a given X c
ϵ .
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Optimal privacy watchdog mechanism

Theorem

[3]:
For a given value of ϵ (subsequently determining Xϵ and Xϵc ), the minimum
value of ϵ′ such that (ϵ′,X c

ϵ )-log-lift is attainable is given by

ϵc
.
= ϵ(X c

ϵ ) = max
s∈S

∣∣∣∣∣log
∑

x∈Xϵc
p(x |s)∑

x∈Xϵc
p(x)

∣∣∣∣∣ ,

which is achieved by any valid X -invariant mechanism RY |X (y |x) = R(y), for
all x , y ∈ X c

ϵ ,
∑

y∈Xϵc
R(y) = 1.
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Optimal privacy watchdog mechanism

Example

PS,X (s, x) =



merged X c
ϵ

0.0204 0.0328 0.2392

0.0442 0.0366 0.1308

0.0383 0.0359 0.1457

0.0464 0.0190 0.2108


The resulting abs -log-lift is much smaller now:

|i(s, x)| = | log ℓ(s, x)| =



0.7614 0.10248 0.1188

0.3369 0.3308 0.1618

0.1537 0.2731 0.0920

0.1178 0.5935 0.0496
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Relaxation

A utility boosting method

Crudely applying a merging solution to all X c
ϵ may hurt utility a lot.

One solution:

Move elements from x ′ ∈ X c
ϵ back to Xϵ as long as probability of violating

ℓ(s, x) > ϵ remains below a suitably chosen small slack threshold δ.
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Relaxation

Example

| log ℓ(s, x)| = |i(s, x)| =

0.0093 0.3298 0.0710 0.3169 0.7614 0.0983 0.1024 0.3598 0.2723

0.4383 1.2163 0.4017 0.0391 0.3369 2.6855 0.3308 0.6598 1.7406

1.5647 0.2054 1.4484 0.4227 0.1537 0.4449 0.2731 0.7189 1.0352

0.1809 0.2419 0.1418 1.5348 0.1178 0.3127 0.5935 2.6078 0.8747


For red elements, the corresponding probability of pair (s, x) occurring is really small. They

correspond to a large reduction in likelihood of s (i(s, x) ≪ 0). Indeed, these correspond to small
negative log-lifts (with large abs value):

PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398
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Relaxation

Example

| log ℓ(s, x)| = |i(s, x)| =

0.0093 0.3298 0.0710 0.3169 0.7614 0.0983 0.1024 0.3598 0.2723

0.4383 1.2163 0.4017 0.0391 0.3369 2.6855 0.3308 0.6598 1.7406

1.5647 0.2054 1.4484 0.4227 0.1537 0.4449 0.2731 0.7189 1.0352

0.1809 0.2419 0.1418 1.5348 0.1178 0.3127 0.5935 2.6078 0.8747


PS,X (s, x) =

0.0394 0.0306 0.0463 0.0463 0.0204 0.0317 0.0328 0.0317 0.0134

0.0438 0.0047 0.0466 0.0235 0.0442 0.0017 0.0366 0.0083 0.0022

0.0061 0.0135 0.0076 0.0387 0.0383 0.0410 0.0359 0.0341 0.0047

0.0441 0.0264 0.0469 0.0069 0.0464 0.0451 0.0190 0.0015 0.0398


Every column that has a blue element now belongs back to Xϵ: low risk symbols.

Overall, the probability of ℓ(s, x) > ϵ is δ = 0.0015 + 0.0017 + 0.0047 < 0.01
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Numerical results

The simulation is the result from 5000 randomly generated PS,X . It shows the
distribution of the utility loss defined as

1− I (X ;Y )

H(X )
.

The more to the left a curve is, the better.
It is clear that much lower utility loss is achievable with a small relaxation of
absolute log-lift ℓ(s, x) going above ϵ with probability δ = 0.005.
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References for differential privacy section and its relation to
information-theoretic measures

[17]: Dwork, McSherry, Nissim and Smith, 2006

[18]: Kasiviswanathan, Lee, Nissim, Raskhodnikova and Smith, 2011

[10]: du Pin Calmon and Fawaz 2012

[4]: D’Oliveira, Sadeghi, Médard, 2021 (and references therein)
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Differential privacy

Differential privacy

A randomised mechanism M : X n → Y is said to satisfy (ϵ, δ)-differential
privacy or (ϵ, δ)-DP for short, if for all neighboring x , x ′ ∈ X n differing on a
single element and all events E ⊂ Y, we have

P[M(x) ∈ E ] ≤ eϵP[M(x ′) ∈ E ] + δ.

Pure differential privacy

Pure differential privacy occurs when δ = 0. In pure DP, the condition for
privacy can be written as:

e−ϵP[M(x ′) ∈ E ] ≤ P[M(x) ∈ E ] ≤ eϵP[M(x ′) ∈ E ], ∀x ∼ x ′,E ⊂ Y.
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Example

A subset of pure ϵ-DP constraints + normal probability constraints:

For any neighbouring x , x ′:

e−ϵP[M(x ′) = R] ≤ P[M(x) = R] ≤ eϵP[M(x ′) = R],

e−ϵP[M(x ′) = B] ≤ P[M(x) = B] ≤ eϵP[M(x ′) = B],

P[M(x) = R] + P[M(x) = B] = 1,

P[M(x ′) = R] + P[M(x ′) = B] = 1,

Roughly speaking, probability of same response for neighbouring datasets (with same
or different true colors) must be more or less the same.
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Differential Privacy applications

Google, for sharing historical traffic statistics [19](Erlingsson et al. ’14).

Apple’s private learning of users’ preferences [20](Apple DP team ’17).

Microsoft for telemetry in Windows [21](Microsoft, Ding et al. ’17).

The 2020 United States Census [22].

Federated learning [23](Edited by Kairouz and McMahan, 2021);
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Local differential privacy

Definition

For a dataset X n consisting of n elements, a randomised mechanism
M : X n → Y is said to satisfy ϵ-differential privacy or ϵ-LDP for short, if for all
x , x ′ ∈ X n and all events E ⊂ Y, we have

e−ϵP[M(x ′) ∈ E ] ≤ P[M(x) ∈ E ] ≤ eϵP[M(x ′) ∈ E ].

Local DP is a much stronger notion than standard DP because it has to be
satisfied for all datasets, not just the neighbouring ones.
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Relation between differential privacy and information-theoretic privacy

Differential privacy is intentionally designed to be free of statistical models
(prior distribution) for the underlying data.

It does not explicitly distinguish “sensitive data” (to protect) from “useful
data” (to share).

An effort in DP is made to separate unavoidable statistical inference
(using statistical side information) from individual or group disclosure.

It may therefore appear that differential privacy and information-theoretic
privacy measures cannot be compared directly.

This is not the case. However, we do require a common interpretation or
notion of what constitutes as sensitive data, S and what constitute as
useful data, X .

At least two approaches have been used in the literature.

We briefly discuss one of these approaches.
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First relational approach

Variable S = (S1, S2, · · · , Sn) is used to represent the dataset variable
which is considered as private, where each discrete entry Si ∈ S belongs to
an individual.

Variable X is used to represent the output of the query function on the
dataset q : Sn → X .
Variable Y is used to represent the mechanism output from input X ,
which is probabilistically mapped from X into Y according to PY |X , with
the goal to hide individual entries Si from the adversary.
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Example of first relational approach

Example

Let us assume S = {0, 1}n represents the truthful response from n individuals
about whether or not they have a certain disease D. The counting query asks
X = q(S) =

∑n
i=1 1D(Si ), where

1D(z) =

{
1, If z has property D,

0, otherwise.

We say s ∼ s ′ if they differ in a single binary value, leading to the
corresponding query values |x − x ′| = 1.
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DP conditions with variable S

DP with sensitive variable S

The mechanism is said to be ϵ-differentially private if

e−ϵPY |S(y |s ′) ≤ PY |S(y |s) ≤ eϵPY |S(y |s ′), s, s ′ ∈ S : s ∼ s ′, ∀y ∈ Y

where s ∼ s ′ denotes any two datasets that are neighbors differing in a single
sensitive coordinate (Hamming distance of 1).

LDP with sensitive variable S

The mechanism is said to be ϵ-locally differentially private if

e−ϵPY |S(y |s ′) ≤ PY |S(y |s) ≤ eϵPY |S(y |s ′), ∀s, s ∈ S, ∀y ∈ Y

This removes the requirement on s, s ′ being neighbors, making it a stronger
notion of differential privacy.
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Upper and lower local information privacy imply local differential privacy

Lemma

JU
LIP(S ;Y ) and JL

LIP(S ;Y ) together imply local differential privacy. That is

JU
LIP(S ;Y ) ≤ ϵu & JL

LIP(S ;Y ) ≥ −ϵl ⇒ (ϵu + ϵl)− LDP.

Proof.

First, note from that

JL
LIP(S ;Y ) = min

s∈S,y∈Y
log

(
PS|Y (s|y)
PS(s)

)
≥ −ϵl

⇒ max
s∈S,y∈Y

log

(
PS(s)

PS|Y (s|y)

)
≤ ϵl .
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Upper and lower local information privacy imply local differential privacy

Proof.

Recalling the definition of local differential privacy in the context of Markov
chain S → X → Y :

sup
y∈Y,s,s′

PY |S(y |s)
PY |S(y |s ′)

= sup
y∈Y,s,s′

PS|Y (s|y)PY (y)

PS(s)

PS(s
′)

PS|Y (s ′|y)PY (y)

≤ eϵueϵl = eϵu+ϵl .
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Local differential privacy implies differential privacy

Lemma

Local differential privacy implies differential privacy. That is (ϵ, δ)-LDP ⇒
(ϵ, δ)-DP.

Follows immediately from more strict definition of local differential privacy.
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Pure local differential privacy implies upper and lower LIP

Lemma

Pure local differential privacy implies upper and lower local information privacy.
That is

ϵ− LDP ⇒ JU
LIP(S ;Y ) ≤ ϵ, JL

LIP(S ;Y ) ≥ −ϵ.
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Pure local differential privacy implies upper and lower LIP

Proof.

Recall the definition of (ϵ, 0)-LDP in context of information theory measures:

e−ϵPY |S(y |s ′) ≤ PY |S(y |s) ≤ eϵPY |S(y |s ′), ∀y ∈ Y, s, s ′ ∈ S

pS|Y (s|y)
PS(s)

=
PY |S(y |s)
PY (y)

=
PY |S(y |s)∑

s′∈S PY |S(y |s ′)PS(s ′)

≤ PY |S(y |s)∑
s′∈S PY |S(y |s)e−ϵPS(s ′)

≤ eϵ

Similarly,

PS|Y (s
′|y)

PS(s ′)
=

PY |S(y |s ′)
PY (y)

=
PY |S(y |s ′)∑

s∈S PY |S(y |s)PS(s)

≥ PY |S(y |s ′)∑
s∈S PY |S(y |s ′)eϵPS(s)

≥ e−ϵ
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Differential privacy does NOT imply mutual information privacy

Lemma

For every ϵ ≥ 0 and δ ≥ 0, there exists a (S ,Y ) vector such that the
mechanism PY |S satisfies (ϵ, 0)-DP but, I (S ;Y ) ≥ δ.

The following counting query counterexample is from [10].
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Differential privacy does NOT imply mutual information privacy

Proof

Let S = {0, 1}n and the counting query asks X = q(S) =
∑n

i=1 1D(Si ). Let n
mod k = 0 and PS be such that

PX (x) =

{
1

1+ n
k
, if x mod k = 0,

0, otherwise.
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Differential privacy does NOT imply mutual information privacy

Proof

Let the DP mechanism be the standard Laplace mechanism:

Y = X + N, N ∼ Lap(1/ϵ),

which is guaranteed to satisfy JDP(X ;Y ) ≤ ϵ.

The probability of correctly guessing X from Y according to Laplace noise
distribution is then:

P(X = Y |X = k) =

∫ k/2

−k/2

ϵ

2
exp(−|x |ϵ)dx = 1− exp(−kϵ

2
).

I (X ;Y ) ≥ I (X ,E ;Y )− 1 ≥ I (X ;Y |E)− 1 ≥ P(E = 0)I (X ;Y |E = 0)− 1

=

(
1− exp

(
−kϵ

2

))
log(1 +

n

k
)− 1,

where k and n can be chosen appropriately to make I (X ;Y ) arbitrarily large.
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Graph-based optimisation of DP, setting [4]

Family of datasets D.
A symmetric relationship in D where d ∼ d ′ are said to be neighbors.3

An output space V. We consider binary V = {1, 2}.
True function f : D → V.
Random functionM : D → V called random mechanism.

Definition: Differential Privacy for binary values

M is (ϵ, δ)-differentially private if, for any d ∼ d ′ and v ∈ V ,

Pr[M(d) = v ] ≤ eϵPr [M(d ′) = v ] + δ

Goal: Approximate the true function f by an (ϵ, δ)-DP mechanismM.

3For the rest of this lecture, we use the notation d, d′ to represent datasets.
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Main contributions

97% 93% 85%

90%
60%

90% 70%

92% 97% 98%

75% 95%

90%

75% 92%
97%

70%
96%

We introduce a graph-theoretical
framework for differential privacy, where:

– Vertices represent datasets.
– Edges connect neighbouring datasets.
– Colours represent the output of true

function.
– A mechanism is a randomised colouring.

We characterise the optimal mechanism in
terms of its values at the boundary.

We present a closed form for the optimal
mechanism when the values at the
boundary satisfy a homogeneity condition.
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Differential privacy as a randomised graph colouring

111 211

112

221121

221

122 222

60%

64%

A dataset with three voters D = {1, 2}3.

The outputs are the candidates
V = {1, 2}.

The true function f is the majority
function.

Vote is private.

A mechanismM is a random coloring.

DP implies that neighboring datasets behave almost the same underM.

(ϵ, δ) = (0.5, 0): if Pr[M(211) = 1] = 0.6, then Pr[M(221) = 1] ≥ 0.36 and
Pr[M(221) = 2] ≤ 0.64.

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Differential privacy as a randomised graph colouring

{1} {2} {3}

{1, 2}

{1, 3}

{2, 3}

{1, 2, 3}
A dataset of who voted
D = P({1, 2, 3})− {∅}.

The outputs are the candidates
V = {1, 2}.

The true function f is the majority
function.

1 and 2 vote blue, 3 votes red. Ties are
resolved in favour of red.

Identity of voter is private.

A mechanismM is a random coloring.

DP implies that neighboring datasets behave almost the same underM.
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How well does the mechanism approximate the true function?

Let M be the set of all mechanisms.

Utility function U : M→ R.

U[M] > U[M′] meansM is better thanM′.

Definition: reasonable utility function

The utility U is reasonable if, for every d ∈ D,
Pr[M(d) = f (d)] ≥ Pr[M′(d) = f (d)] implies U[M] ≥ U[M′].

If Pr[M(d) = f (d)] ≥ Pr[M′(d) = f (d)] for every d ∈ D, we say that the
mechanismM dominatesM′.

We say a mechanism is optimal if it dominates every mechanism it is
comparable to.
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Example: mechanism domination

80% 65%

60%

63% 60%

62%

65% 75%

76% 62%

60%

59% 59%

61%

65% 70%

The mechanism on the left dominates the one on the right.
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Example: mechanism domination

80% 65%

60%

63% 60%

62%

65% 75%

80% 60%

65%

63% 60%

65%

62% 75%

Each mechanism performs better on at least one dataset compared to the
other mechanism.

Neither mechanism dominates the other.
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Optimal mechanisms and boundaries

Blue set: B = {d ∈ D : f (d) = 1}.

Interior:
Bo = {d ∈ B : d ∼ d ′ ⇒ d ′ ∈ B}.

Boundary: ∂B = B − Bo.

Analogous concepts for Red.

Theorem: optimal mechanism

Let md ∈ [0, 1] be a fixed value for every d ∈ ∂B. Then, there exists at most
one optimal (ϵ, δ)-DP mechanismM such that Pr[M(d) = 1] = md , for every
d ∈ ∂B.
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Example: (ϵ, δ) = (log(2), 0.1)

100% 100% 85%

90%

60%

90% 70%

92% 100% 100%

75% 100%

90%

75% 92%

100%

70%
100%
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Morphisms

a b c

g
h

k ℓ

d e f

i j

m

n o
p

q r

g

a
b

g
c

h

k ℓ

d e

i j f

m

n o
p
r

q

Definition: Morphisms

A morphism is a function g : D1 → D2 such that d
1∼ d ′ implies in either

g(d)
2∼ g(d ′) or g(d) = g(d ′).

Example: on the left, j , f are neighbours. On the right, they collapse to the
same dataset g(d) = g(d ′).

Example: on the left, o, j are neighbours. On the right, they remain neighbours

g(d)
2∼ g(d ′).
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Morphisms

a b c

g
h

k ℓ

d e f

i j

m

n o
p

q r

g

a
b

g
c

h

k ℓ

d e

i j f

m

n o
p
r

q

Theorem: DP via pullbacks

LetM2 be an (ϵ, δ)-DP mechanism on D2. Then,M1 =M2 ◦ g is (ϵ, δ)-DP
on D1.
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Boundary homogeneity

a b c

g

h

k ℓ

d e f

i j

m

n o
p

q r

Definition: boundary homogeneous mechanisms

A mechanismM is boundary homogeneous if the probabilities at the boundary
are the same.
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The boundary morphism

a b c

g
h

k ℓ

d e f

i j

m

n o
p

q r

g∂

a
b

c
g
k

h
ℓ

i
n
q

d
o
m

j
p
r

e
f

Definition: boundary morphism

The boundary morphism g∂ maps D to a line which preserves the distance from
any vertex to the boundary.
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Optimal mechanisms

a b c

g
h

k ℓ

d e f

i j

m

n o
p

q r

g∂

a
b

c
g
k

h
ℓ

i
n
q

d
o
m

j
p
r

e
f

Theorem: optimal boundary homogeneous mechanisms

LetM∂ be the optimal (ϵ, δ)-DP mechanism on the boundary graph of D.
Then, the pullbackM =M∂ ◦ g∂ is the optimal boundary homogeneous
(ϵ, δ)-DP mechanism on D.
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Optimal mechanism on the (nB , nR)-line

1 2 3 nB − τ − 2nB − τ − 1 nB − τ nB − 1 nB nB + 1 nB + nR

Initial Recurrence: RIniTerminal Recurrence: RTer

Definition: initial recurrence

RIni(n, i) = 1− eϵi (1− Rn)− δ(e iϵ−1)
eϵ−1

Definition: terminal recurrence

RTer(n, i) =
Rn
eϵi
− δ(eϵi−1)

eϵi (eϵ−1)
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Optimal mechanism on the (nB , nR)-line

1 2 3 nB − τ − 2nB − τ − 1 nB − τ nB − 1 nB nB + 1 nB + nR

Initial Recurrence: RIniTerminal Recurrence: RTer

Theorem: optimal mechanism on a line

The unique optimal (ϵ, δ)-DP mechanism on the (nB , nR)-line with
Pr[M(nB) = 2] = RnB is such that

RnB−i =

{
RIni(nB , i) if i ≤ τ + 1,

RTer(nB − τ − 1, i − τ − 1) if τ + 1 < i ,

for every i ∈ [1, nB − 1] and where τ is defined as

τ =

⌈
1

ϵ
log

(
eϵ + 2δ − 1

(1− RnB )(e
3ϵ − eϵ) + δ(e2ϵ + eϵ)

)⌉
,
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Balanced mechanisms

Definition: initial recurrence

A mechanismM is balanced if Pr[M(d) = 1] = Pr[M(d ′) = 2] for every
d ∈ ∂B and d ′ ∈ ∂R.

Corollary: optimal balanced mechanism

The optimal balanced (ϵ, δ)-DP mechanism is such that, for every d ∈ Bo,

Pr[M(d) = 2] =
eϵ − 1− δ(eϵ(dist(d,∂B)+1) + eϵ dist(d,∂B) − 2)

eϵ dist(d,∂B)(eϵ + 1)(eϵ − 1)
.
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Extensions

Extension to non-homogenous boundary conditions (how to propagate the
probabilities down from different boundary values) - almost done.

Extension to non-binary functions (more colours) - in train.

Contextualising other mechanisms such as exponential and Laplace on the
dataset graph and comparisons - in train.
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Extra slides on model section and privacy measures

Extra slides on model section and privacy measures
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Model - variables with noisy observation variable W [12]

s ∈ S: sensitive information to protect.

x ∈ X : useful information to share.

w ∈ W: directly observable data, which may be a noisy version of
variables S and/or X .

Target application imposes the specific statistical data model:

PS,X

The observation constraint is:

PW |S,X

y ∈ Y: released variable based on W .

Figure from [12].

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Model - Markov chain, mechanism, PUT

Markov model

(S ,X )→W → Y

The mechanism is specified by the conditional distribution PY |W .

Y should provide utility about X while protecting privacy by limiting the
information it reveals about S .
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Privacy-utility trade-off (PUT)

We say a particular privacy-utility pair (ϵ, ρ) is achievable if there exists a
mechanism PY |W such that we simultaneously have:

J(S ;Y ) ≤ ϵ,

and
D(PX ,Y ) ≤ ρ.

The set of all achievable privacy-utility tradeoffs forms the achievable
region of privacy-utility tradeoff.
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Privacy-utility trade-off (PUT) [12]

The optimal region boundary is the solution to the optimisation problem:

ϵ∗(ρ) = inf
PY |W

J(S ;Y ),

s.t. D(PX ,Y ) ≤ ρ.

We can alternatively write the privacy-centric optimal boundary:

ρ∗(ϵ) = inf
PY |W

D(PX ,Y ),

s.t. J(S ;Y ) ≤ ϵ.
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The use of Markov chain

PY |X (y |x) =
∑

w∈W,s∈S
PY ,W ,S|X (y ,w , s|x)

=
∑

w∈W,s∈S
PS|X (s|x)PW |S,X (w |s, x)PY |W (y |w),

PY |S(y |s) =
∑

w∈W,x∈X
PY ,W ,X |S(y ,w , x |s)

=
∑

w∈W,x∈X
PX |S(x |s)PW |S,X (w |s, x)PY |W (y |w).
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Special full data observation model

PS,X is general, but
W = (S ,X ),

capturing the situation when the mechanism has direct noiseless access
to both sensitive and useful information.

For this case, the privacy-utility optimisation problems reduce to

ϵ∗FD(ρ) = inf
PY |S,X

J(S ;Y ),

s.t. D(PX ,Y ) ≤ ρ.

And for the privacy-centric optimisation:

ρ∗FD(ϵ) = inf
PY |S,X

D(PX ,Y ),

s.t. J(S ;Y ) ≤ ϵ.
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Special output perturbation observation model

PS,X is general, but
W = X ,

where mechanism has direct noiseless access to useful information only.

That is, we have the additional Markov chain constraint

S → X → Y .

The privacy-utility optimisation problems reduce to

ϵ∗OP(ρ) = inf
PY |X

J(S ;Y ),

s.t. D(PX ,Y ) ≤ ρ.

where

PY |S(y |s) =
∑
x∈X

PY ,X |S(y , x |s) =
∑
x∈X

PX |S(x |s)PY |X (y |x).
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Full data versus output perturbation observation model

It is clear that full data performs better than output perturbation in terms
of privacy measure because of access to more data directly

ϵ∗FD(ρ) ≤ ϵ∗OP(ρ).
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α-loss [11]

α-loss with Y

Recall the Markov chain S → Y → Ŝ , where Ŝ is an estimator of S from Y .
For any α ∈ [1,∞], the α-loss of the strategy PŜ|Y is defined as

cα(s, y ,PŜ|Y ) =



α
α−1

(1− PŜ|Y (s|y)1−
1
α ), α ∈ (1, α),

− logPŜ|Y (s|y), α = 1,

1− PŜ|Y (s|y), α =∞.

For large α, larger probabilities PŜ|Y (s|y) give lower losses.
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α-loss

α-loss without Y

By the same token, the α-loss of the strategy PŜ in the absence of Y is

cα(s,PŜ) =



α
α−1

(1− PŜ(s)
1− 1

α ), α ∈ (1, α),

− logPŜ(s), α = 1,

1− PŜ(s), α =∞.
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Minimum expected α-loss with Y

Minimum α-loss with Y

For α ∈ [1,∞], the minimal expected α-loss with observation Y is

min
P
Ŝ|Y

EPS,Y
[cα(S ,Y ,PŜ|Y )] =



α
α−1

(
1−∑y∈Y PY (y) ∥PS|Y=y∥α

)
, α ∈ (1,∞),

H(S|Y ), α = 1,

1−∑y∈Y PY (y)maxs∈S PS|Y (s|y), α = ∞,

Optimal estimation strategy with Y is the normalised α-norm of distribution

P∗
Ŝ|Y (s|y) =

PS|Y (s|y)α∑
s∈S PS|Y (s|y)α

, s ∈ S, y ∈ Y.
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Minimum expected α-loss with Y

Proof.

min
P
Ŝ|Y

EPS,Y [cα(S ,Y ,PŜ|Y )] = min
P
Ŝ|Y

[
α

α− 1
(1−

∑
s,y

PS,Y (s, y)PŜ|Y (s|y)1−
1
α )]

min
P
Ŝ|Y

EPS,Y [cα(S ,Y ,PŜ|Y )] =
α

α− 1
(1−max

P
Ŝ|Y

[∑
s,y

PS,Y (s, y)PŜ|Y (s|y)1−
1
α )

]

min
P
Ŝ|Y

EPS,Y
[cα(S ,Y ,PŜ|Y )] =

α

α− 1
(1−max

P
Ŝ|Y

∑
y

P(y)
∑
s

P(s|y)PŜ|Y (s|y)1− 1
α )
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Minimum expected α-loss with Y

Proof.

max
P
Ŝ|Y

[∑
P(s|y)PŜ|Y (s|y)1−

1
α

]
s.t.

∑
s

PŜ|Y (s|y) = 1, ∀y ∈ Y

PŜ|Y (s|y) ≥ 0 ∀s ∈ S, y ∈ Y

⇒ P∗
Ŝ|Y (s|y) =

PS|Y (s|y)α∑
s∈S PS|Y (s|y)α

, s ∈ S, y ∈ Y

max
P
Ŝ|Y

[∑
P(s|y)PŜ|Y (s|y)1−

1
α

]
= ∥PS|Y=y∥α=

(∑
s∈S

PS|Y (s|y)α
) 1

α

.
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Minimum expected α-loss without Y

Minimum α-loss without Y

For α ∈ [1,∞], the minimal expected α-loss without any observation Y is

min
P
Ŝ

EPS
[cα(S,PŜ )] =



α
α−1

(
1−

(∑
s PS (s)

α
) 1

α

)
= α

α−1
(1− ∥PS∥α) , α ∈ (1,∞)

H(S), α = 1,

1−maxs∈S PS (s) α = ∞.

Optimal estimation strategy without Y is the normalised α-norm of distribution

P∗
Ŝ (s) =

PS(s)
α∑

s∈S PS(s)α
, s ∈ S.
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α-leakage [11]

Definition

The α-leakage between S and Y is (the scaled logarithm of) the multiplicative
increase in the maximal expected α-reward gained by the adversary:

JαL(S ;Y ) = lim
α′→α

α′

α′ − 1
log

maxP
Ŝ|Y

EPS,Y [PŜ|Y (S |Y )1−
1
α′ ]

maxP
Ŝ
EPS [PŜ(S)

1− 1
α′ ]

 .
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α-leakage [11]

Theorem

α-leakage is equal to Arimoto mutual information of order α. That is,

JαL(S ;Y ) = IAα (S ;Y ).
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Maximal α-leakage [11]

Definition (Maximal α-leakage)

Maximal α-leakage between variable X and released variable Y is defined as

JMαL(X ;Y ) = sup
S→X→Y

JαL(S ;Y ),

which measures adversary’s capability to infer any (possibly random) function
of X from Y .
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Maximal α-leakage [11]

Theorem

Maximal α-leakage is given by

JMαL(X ;Y ) =


sup

P
X̃
≪PX

IAα (X̃ ;Y ) = sup
P
X̃
≪PX

I Sα(X̃ ;Y ), α ∈ (1,∞],

I (X ;Y ) α = 1,

where the supremum is over all distributions PX̃ whose support is a subset of
(or equal to) that of PX .
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Special case for α = ∞: maximal leakage [24]

Definition (Maximal leakage)

Maximal leakage between variable X and released variable Y is the maximal
α-leakage for α =∞

JML(X ;Y ) = JMαL(X ;Y )|α=∞ = sup
S→X→Y

IA∞(S ;Y ),

Theorem

Maximal leakage is given by

JML(X ;Y ) = I S∞(X ;Y ) = log
∑
y∈Y

max
x∈X

PY |X (y |x).
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Tunable α-lift [5]

Tunable α-lift is inspired by the two notions of local information privacy
(lift) and tunable α-leakage.

Score a tunable version of the lift, ℓ(s, y) for α ∈ (1,∞) with the
likelihood of s, PS(s) as follows:

ℓα(y) ≜

(∑
s∈S

PS(s)ℓ(s, y)
α

) 1
α

=

(∑
s∈S

PS(s)

(
PS|Y (s|y)
PS(s)

)α
) 1

α

=
α− 1

α
exp

(
Dα(PS|Y=y∥PS)

)
, y ∈ Y.

This is the expected α-norm of lift, also rewritten as

ℓα(y) =

(∑
s∈S

PS(s)

(
PY |S(y |s)
PY (y)

)α
) 1

α

=
1

PY (y)

(∑
s∈S

PS(s)PY |S(y |s)α
) 1

α

.
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Tunable α-lift and Sibson mutual information [5]

The Sibson mutual information of order α between S and Y is the expected
α-lift over marginal distribution of the released information Y .

I Sα(S ;Y ) =
α

α− 1
log
∑
y∈Y

(∑
s∈S

PS(s)PY |S(y |s)α
) 1

α

=
α

α− 1
log
∑
y∈Y

PY (y)

PY (y)

(∑
s∈S

PS(s)PY |S(y |s)α
) 1

α

=
α

α− 1
log
∑
y∈Y

PY (y)ℓα(y) =
α

α− 1
logEPY [ℓα(Y )].
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Tunable α-lift measure [5]

Definition

The (worst-case) α-lift measure between S and Y is maximum of logarithm of
ℓα(y) over y ∈ Y. That is,

JαLift(S ;Y ) = max
y∈Y

log(ℓα(y)) = max
y∈Y

log

(∑
s∈S

PS(s)ℓ(s, y)
α

) 1
α

 ,

where

ℓ(s, y) =
P(s|y)
P(s)

,

is the lift.
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α-privacy watchdog method [5]

Privatisation Scheme: replace worst-case i(s, x) by log ℓα(x) in watchdog
method [15].

For ϵ > 0: Xϵ = {x ∈ X : log ℓα(x) ≤ ϵ}, X c
ϵ = X \ Xϵ.

P(y |x) =


1 x = y ∈ Xϵ,

0 x , y ∈ Xϵ, x ̸= y ,

r(y |x) x , y ∈ X c
ϵ ,

(1)

By randomisation P(y |x), the resulting α-lift of y ∈ Y is:

Resulted α-lift

ℓα(y) =


ℓα(x) x , y ∈ Xϵ : x = y ,(∑

s∈S
P(s)

(
P(y |s)
P(y)

)α
)1/α

= y ∈ X c
ϵ .

(2)

for y ∈ X c
ϵ : P(y) =

∑
x∈X c

ϵ
r(y |x)P(x), P(y |s) =∑x∈X c

ϵ
r(y |x)P(x |s).
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Optimal r∗(y |x)

For watchdog randomisation, it suffices to determine the optimal r(y |x). It was
shown in [5] that the optimal r∗(y |x) minimizing the worst-case ℓα(y) in the
high-risk symbols ∀x , y ∈ X c

ϵ is X -invariant.

Optimal r∗(y |x)
For all α ∈ (1,∞) and ϵ > 0,

r∗(y |x) = R(y) ∈ argmin
r(y|x)

max
y∈X c

ϵ

ℓα(y), ∀x , y ∈ X c
ϵ (3)

Example - Uniform Mechanism: R(y) = 1
|X c

ϵ |
, ∀y ∈ X c

ϵ .

Example - Merging Mechanism: R(y∗) = 1 : for supersymbol y∗ ∈ X c
ϵ .

This generalises the existing results in [3].
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Extra slides on relations and properties of different privacy measures

Extra slides on relations and properties of different privacy
measures
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Upper local information privacy implies α-leakage

Lemma

JU
LIP(S ;Y ) implies JαL(S ;Y ). That is

JU
LIP(S ;Y ) ≤ ϵu ⇒ JαL(S ;Y ) ≤ α

α− 1
ϵu.
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Upper local information privacy implies α-leakage

Proof.

First, note:

JU
LIP(S ;Y ) ≤ ϵu

⇒ i(s, y) = log

(
PS|Y (S = s|Y = y)

PS(S = s)

)
≤ ϵu, ∀s ∈ S, y ∈ Y

⇒ PS|Y (S = s|Y = y) ≤ eϵuPS(S = s), ∀s ∈ S, y ∈ Y

⇒ ∥PS|Y=y∥α≤ eϵu∥PS∥α, ∀y ∈ Y.

Recall that JαL(S ;Y ) = IAα (S ;Y ). Therefore, for α ∈ (1, α):

IAα (S ;Y ) =
α

α− 1
log

(∑
y∈Y PY (y)∥PS|Y=y∥α

∥PS∥α

)
≤ α

α− 1
ϵu.
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Upper local information privacy implies α-leakage

Proof.

The case for α = 1 was explicitly proved. The case for α =∞ can explicitly be
proved as follows, noting that

PS|Y (S = s|Y = y) ≤ eϵuPS(S = s), ∀s ∈ S, y ∈ Y
⇒ max

s∈S
PS|Y (S = s|Y = y) ≤ eϵuPS(S = s), ∀y ∈ Y.

Therefore,

IA∞(S ;Y ) = log

(∑
y∈Y PY (y)maxs∈S PS|Y (s|y)

maxs∈S PS(s)

)

≤ log

(∑
y∈Y PY (y)e

ϵuPS(S = s)

maxs∈S PS(s)

)

= log

(
eϵuPS(s)

∑
y∈Y PY (y)

maxs∈S PS(s)

)
≤ ϵu.
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Upper local information privacy implies α-lift

Lemma

JU
LIP(S ;Y ) implies JαLift(S ;Y ). That is

JU
LIP(S ;Y ) ≤ ϵu ⇒ JαLift(S ;Y ) ≤ ϵu.
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Upper local information privacy implies α-lift

Proof.

First note,

JU
LIP(S ;Y ) ≤ ϵu

⇒ i(s, y) = log

(
PS|Y (S = s|Y = y)

PS(S = s)

)
= log ℓ(s, y) ≤ ϵu, ∀s ∈ S, y ∈ Y

⇒ ℓ(s, y) ≤ eϵu , ∀s ∈ S, y ∈ Y

⇒ JαLift(S ;Y ) = max
y∈Y

log

(∑
s∈S

PS(s)ℓ(s, y)
α

) 1
α


≤ max

y∈Y
log

(∑
s∈S

PS(s)e
αϵu

) 1
α


= ϵu

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Maximal α-leakage implies α-leakage

Lemma

Maximal α-leakage implies α-leakage. That is

JMαL(X ;Y ) ≤ ϵ ⇒ JαL(X ;Y ) ≤ ϵ.

Follows immediately from the definition of maximal α-leakage which is the
supremum of α-leakage over all Markov chains S → X → Y .
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Maximal α-leakage implies maximal α′-leakage for α ≤ α′

Lemma

Maximal α′-leakage implies maximal α-leakage. In particular, for
1 ≤ α ≤ α′ ≤ ∞, we have

JMαL(X ;Y ) ≤ ϵ ⇒ I (X ;Y ) ≤ ϵ,

JMα′L(X ;Y ) ≤ ϵ ⇒ JMαL(X ;Y ) ≤ ϵ,

(α′ =∞) JML(X ;Y ) ≤ ϵ ⇒ JMα′L(X ;Y ) ≤ ϵ.

Follows from the monotonicity property of the Sibson mutual information in
order α.
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Desired properties

In the remaining slides we discuss basic desired properties of privacy measures.
Adapted mainly from [12].
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Independence

Independence

Any meaningful privacy measure must be non-negative J(S ;Y ) ≥ 0 with
J(S ;Y ) = 0 if and only if S and Y are independent.
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Post-processing inequality

Definition

A privacy measure J(S ;Y ) satisfies the post-processing inequality if and only if
for any S → Y1 → Y2 that form a Markov chain, we have J(S ;Y1) ≥ J(S ;Y2).

This property is a fundamental, axiomatic requirement for any reasonable
privacy measure.

It establishes that a privacy measure cannot deteriorate by independent
post-processing of the released data.
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Linkage inequality

Definition

A privacy measure J(S1;Y ) satisfies the linkage inequality if and only if for any
S2 → S1 → Y that form a Markov chain, we have that J(S1;Y ) ≥ J(S2;Y ).

Having this property in the privacy measure is important because:

If the release was generated from only the primary sensitive data S1, then
the privacy-leakage for the secondary sensitive data S2 is bounded by the
privacy-leakage for the primary sensitive data S1.

It provides stronger privacy guarantees, especially when there may be
unforeseen secondary sensitive data correlated with the primary sensitive
data originally considered in the release.
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The relationship between linkage and post-processing inequalities

Lemma

For symmetric privacy measures where J(S ;Y ) = J(Y ; S), post-processing and
linkage inequalities are equivalent.

Proof.

Assume post-processing inequality holds in S → Y1 → Y2 ⇔ Y2 → Y1 → S .

J(S ;Y1) ≥ J(S ;Y2)⇒ J(Y1; S) ≥ J(Y2; S)

where the last inequality is the linkage inequality if rename the variables in
Markov chain Y2 → Y1 → S to S2 → S1 → Y to conclude:

J(S1;Y ) ≥ J(S2;Y ).

The other direction to establish the equivalence can be similarly proved.
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Differential privacy holds post-processing but not linkage inequality

Lemma

The differential privacy measure JDP(S ;Y ) does not satisfy the linkage
inequality.

Pure Differential Privacy Measure

JDP(S ;Y ) = sup
s,s′:s∼s′,E⊂Y

∣∣∣∣log( P(Y ∈ E |s)
P(Y ∈ E |s ′)

)∣∣∣∣ .
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Differential privacy holds post-processing but not linkage inequality

proof

The counterexample is from [12].

Consider two databases S1, S2, each with two binary entries
S1,S2 ∈ {0, 1}2.
Let Y ∈ {0, 1}.
Let database S1 = (s11 , s

1
2 ) be a deterministic and correlated entry function

of database S2 = (s21 , s
2
2 ).

Let database entries of S1 be identically correlated and determined as
s11 = s12 = s21 ∨ s22 .

E.g., S1 represents disease (e.g., covid-19, delta variant) in any member in
a family of two, whereas S2 contains the original disease indicator per
family member.

Parastoo Sadeghi Fundamental trade-offs between privacy and utility in data sharing



Differential privacy holds post-processing but not linkage inequality

proof

The release mechanism for Y ∈ {0, 1} is based on access to S1 only:

PY |S1(Y = 1|S1 = (s11 , s
1
2 )) =


q, (s11 , s

1
2 ) = (0, 0),

s, (s11 , s
1
2 ) = (1, 1),

r , otherwise,

where 0 < q < r < s < 1.

Figure from [12].
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Differential privacy holds post-processing but not linkage inequality

proof

Now consider the JDP(S1;Y ) which is given as

JDP(S1;Y ) = max

{
log

s

r
, log

r

q
, log

r̄

s̄
, log

q̄

r̄

}
.

Due to the construction of the mechanism 0 < q < r < s < 1, we have

max

{
s

r
,
r

q

}
<

s

q
max

{
r̄

s̄
,
q̄

r̄

}
<

q̄

s̄
.

Therefore,

JDP(S2;Y ) = max

{
log

s

q
, log

q̄

s̄

}
> JDP(S1;Y ),

which shows violation of linkage inequality.
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Selected further reading

Connections between conditional worst-case mutual information and
differential privacy: [25]: Cuff and Yu, 2016

Connections between mutual information, identifiability and differential
privacy: [26]: Wang, Ying and Zhang, 2016

Quantitative information flow, Bayesian inference, g-leakage, axomatic
reasoning about privacy measures, [27, 28, 29]: Smith, 2009; Alvim et al,
2014, Alvim et al, 2016
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