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Lecture 1: Overview & a fair classifier using mutual information

AI is prevalent

This tutorial touches upon a role of information theory and statistics in the trending field of
AI. As AI becomes prevalent in our daily lives, we anticipate AI can play a significant role in
a widening array of domains ranging from emerging killer applications such as AI assistant and
self driving, to sensitive human-right-concerned applications like job hiring, judgement and loan
decision.
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Figure 1: AI plays a powerful role in many applications.

Trustworthy AI

As AI becomes more and more powerful, one critical aspect that people wish to equip AI systems
with is trustworthiness. To this end, major IT companies such as Google and IBM set out some
promising directions towards trustworthy AI. Google targets responsibility for AI systems.

(Google): “AI has significant potential to help solve challenging problems, including by advancing

medicine, understanding language, and fueling scientific discovery. To realize that potential,

it’s critical that AI is used and developed responsibly.”

IBM pursues a new design paradigm centered around trustworthy AI.

(IBM): “Moving forward, “build for performance” will not suffice as an AI design paradigm.

We must learn how to build, evaluate and monitor for trust.”

There are five aspects that people take into account for enabling trustworthy AI. See Fig. 2.
The first is fairness, which aims to design a model that does not discriminate among different
demographics and/or individuals. The second is robustness. We desire to protect against noisy
and possibly adversarial data. The third is explainability. A trained model should be explainable
and interpretable so that people can readily be convinced by model’s decision. The fourth is value
alignment, meaning that a decision based on model’s output should be aligned with actually what
people want in reality. The last is transparency. A model should be developed in a transparent
manner, being possibly be open to public. Obviously it is not that simple to satisfy all of these
requirements. Recently, significant ongoing efforts have been made towards achieving the five
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Figure 2: Five requirements for enabling trustworthy AI: (i) fairness across different demograph-
ics and/or individuals; (ii) robustness to data poisoning; (iii) explanability of trained models;
(iv) alignment of model’s output with actually what people want in reality; and (v) transparency
of model development.

aspects. This tutorial targets only two: the fairness and robustness topics which we have made
some recent progress on via some tools of information theory and statistics.

Outline of this tutorial

Specifically we will explore fairness issues in the context of one prominent machine learning
model that concerns a supervised learning setup. That is, fair classifiers which intend to make
unbiased decisions in light of different groups and/or individuals. Specifically what we are going
to cover are three-folded. In today’s lecture (Lecture 1), we will first figure out what it means
by fairness in the context of classifiers. We will then study one fair classifier using arguably
the most powerful information-theoretic notion: mutual information. In Wednesday’s lecture
(Lecture 2), we will next investigate another fair classifier that is built upon a very well-known
statistical method named Kernel Density Estimation (KDE). We will also emphasize that it
offers a better accuracy-fairness tradeoff performance. The fairness performance metric will be
defined shortly. Lastly in Friday’s lecture (Lecture 3), we will explore another fair classifier also
being robust to data poisoning.

Fairness in the context of classifiers

Let me first explain what it means by fairness in the context of classifiers. There are many
fairness concepts that people have considered for classifiers. One prominent concept of this
tutorial’s focus is the so called group fairness 1. It is about prediction outcomes. The group
fairness pursues predictions to exhibit similar statistics regardless of sensitive attributes of indi-
viduals such as race, gender, age and religion. Why do we care about this? It is because there
are many applications concerning such sensitive attributes. Two applications are highlighted in
Fig. 3: (i) job hiring; (ii) parole decision. In these applications, fair classifiers serve to ensure
fairness among different demographics.

Demographic Parity (DP)

One concrete fairness condition (in the realm of group fairness) that is very popular and therefore

1There are two other concepts extensively explored in the literature: (i) individual fairness (pursuing fairness
in the level of individuals); and (ii) causality-based fairness (exploring the causal relationship between sensitive
attributes). But we will not touch upon these in this tutorial.
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job hiring parole decision (假釋放判決)

Figure 3: Two important applications of fair classifiers: (i) job hiring in which applicants want no
discrimination depending on their race and/or sex; (ii) parole decision for which a fair predictor
of recidivism (reoffending) score can play a crucial role.

I would like to focus on is the so called Demographic Parity (DP) condition [1, 2]. Let me explain
what it is in the context of the recidivism score prediction. Let Z be a sensitive attribute, say 0
for black and 1 for white. Let Ỹ be a prediction made in hard decision, e.g., Ỹ = 1 (reoffending
in the near future, say within two years) or 0 (not reoffending). The DP condition means the
independence between prediction and sensitive attribute, Ỹ⊥Z, formally stated as:

P(Ỹ = 1|Z = z) = P(Ỹ = 1), ∀z ∈ Z (1)

where Z denotes the alphabet set of Z; Z = {0, 1} in this example. There are many ways to
quantify how well the DP condition is satisfied. One natural way that we will take here is to
quantify the degree of fairness via the Difference between two interested probabilities that arise
in the DP condition (1) (DDP for short):

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (2)

Notice that the independence implies DDP = 0 and vice versa. Hence, the smaller DDP, the
prediction Ỹ is more independent of Z, thereby representing a fairer scenario.

Equalized Odds (EO)

The DP condition might not be desirable when the ground-truth label statistics of the two groups
are by far distinct with each other, i.e., P(Y = 1|Z = 1)� P(Y = 1|Z = 0) or vice versa. In this
case, the DP condition is far from the ground-truth label distribution, and therefore enforcing
the DP condition may aggravate prediction accuracy significantly. This shortcoming motivated
the use of the following condition, named Equalized Odds (EO), which pursues the conditional
independence: Ỹ⊥Z|Y , i.e.,

P(Ỹ = 1|Y = y, Z = z) = P(Ỹ = 1|Y = y), ∀z ∈ Z, ∀y ∈ Y. (3)

Notice that P(Ỹ = 1|Y = y) is closely coupled with prediction accuracy, e.g., it reads the
probability of being correct when y = 1. The EO condition somehow promotes the equalized
prediction accuracies, and enforcing the EO condition actually has little to do with reducing
accuracy in such asymmetric case P(Y = 1|Z = 1) � P(Y = 1|Z = 0). So the EO condition is
much more preferably employed in practice, although it is not guaranteed to be always strictly
better than the DP condition. Similar to DDP, the EO condition can be quantified via the
Difference between the two interested probabilities in the EO condition (3) (DEO for short):

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|. (4)
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On a side note: There is another fairness measure beyond DDP and DEO, which concerns
precision quality and is defined below:∑

ỹ∈Y

∑
z∈Z
|P(Y = 1|Ỹ = ỹ, Z = z)− P(Y = 1|Ỹ = ỹ)|. (5)

The use of fairness measures depend on applications which might put an emphasis on accuracy
or precision performance.
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Figure 4: A partial list of references regarding fair classifiers.

Many recent works on fair classifiers

There has been a proliferation of fairness algorithms that intend to minimize DDP or DEO.
Fig. 4 exhibits only a partial list of the relevant references. These are chronologically listed
up, yet categorized into two columns. The references in the second column are the ones which
are relevant to information theory & statistics of this audience’s potential interest and hence
I would like to put a particular emphasis on. Specifically Zafar et al. [2] employ a well-known
statistical measure, called Pearson correlation, which also often arises in information theory.
Baharlouei et al. [12] and Lee et al. [14] rely upon other prominent measures, Rényi correlation
and HGR (Hirchfeld-Gebelein-Rényi) maximal correlation, respectively. Jiang et al. [13] employ
the famous Wasserstein distance. Cho-Hwang-Suh [9] and Roh-Lee-Whang-Suh [10] employ
arguably the most powerful and prominent information-theoretic measure, mutual information.
There is another work [11] which exploits a well-known statistical method: Kernel Density
Estimation (KDE).

Among these, we will focus on the following three works concerning mutual information and
KDE: Cho-Hwang-Suh [9], Roh-Lee-Whang-Suh [10] and Cho-Hwang-Suh [11]. A couple of
reasons why I made such a choice. The first and obvious reason is that I can teach them well,
as I was involved in as a co-author. Second, the references [9, 10] concern the very famous
mutual information that some of you guys are excited about and/or familiar with. Third, the
last reference [11] proposes a simple yet powerful fair classifier which I believe is the state of the
art.

Here are what we are going to cover in detail next. For the rest of this lecture, we will study
an interesting connection between fairness measures (DDP and DEO) and mutual information
(MI), and then will exploit the connection to investigate an MI-inspired fair classifier developed
in [9]. In Lecture 2, we will explore the state of the art based on KDE [11]. In Lecture 3, we
will study another fair classifier that is also robust to data poisoning [10].

Problem setting of a fair classifier

Fig. 5 illustrates the architecture of a conventional binary classifier. There are two types of
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Figure 5: A problem setting of a binary fair classifier. Here X denotes normal (possibly non-
sensitive) data, Z ∈ Z indicates a sensitive attribute with arbitrary alphabet size, and Y is a
binary label. Let Ŷ be the prediction output that intends to learn the ground-truth conditional
probability P(Y = 1|X = x, Z = z) and Ỹ be its hard-decision Ỹ := 1{Ŷ ≥ τ} where τ is a
certain threshold. Here the classifier is parameterized by w.

data for input: (i) normal (possibly non-sensitive) data; (ii) sensitive attributes. We denote the
normal data by X. In the case of recidivism score prediction, such X may refer to a collection
of the number of prior criminal records and a criminal type, e.g., misdemeanour or felony. For
sensitive data, we employ a different notation, say Z. In the above example, Z may indicate a
race type among black (Z = 0) and white (Z = 1). In general, the alphabet size of Z is arbitrary.
For instance, there are many race types such as Black, White, Asian, Hispanic, to name a few.
Also there could be multiple sensitive attributes like gender and religion. In order to reflect
such practically-relevant scenarios, we consider Z ∈ Z with an arbitrary alphabet size that can
represent a collection of possibly many sensitive attributes. Let Ŷ be the classifier output which
aims to represent the ground-truth conditional distribution P(y|x, z) := P(Y = y|X = x, Z = z).
Here Y ∈ Y denotes the ground-truth label. In the recidivism score prediction, Y = 1 means
reoffending in the near future, say within two years (Y = 0 otherwise), while Ŷ indicates the
probability of such event being occurred. Let Ỹ be its hard-decision Ỹ := 1{Ŷ ≥ τ} where τ is
a certain threshold. Here the classifier is parameterized by w. We consider a supervised learning
setup, so we are given m example triplets: {(x(i), z(i), y(i))}mi=1.

For illustrative purpose, this tutorial focuses on the simple binary classification setting and one
fairness measure DDP:

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (6)

Fairness-regularized optimization

A conventional classifier optimization often takes the following form:

min
1

m

m∑
i=1

`CE(y(i), ŷ(i)) (7)

where `CE(y, ŷ) indicates cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (8)

How to incorporate the fairness measure DDP? Notice that the smaller DDP, the fairer situation.
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Hence, one natural approach is to enforce fairness via regularization as below:

min
1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · DDP (9)

where λ denotes a regularization factor that lies in between 0 and 1. One can interpret λ
as a fairness tuning knob. Here a challenge arises in solving the regularized optimization (9).
Recalling the definition (6) of DDP, we see that DDP is a complicated function of the optimization
variable w. It turns out it is not that simple to express DDP in terms of w. One effort to address
this challenge was made by Zafar et al. [2]. They introduce an easily-expressible proxy for the
fairness measure. Specifically they employ a covariance function between Ŷ and Z. However,
this proxy serves only as a weak constraint because a small covariance does not necessarily
imply the independence although the reverse always hold. In this tutorial, we will study another
approach which introduces a different regularization term that can serve as a strong constraint
for the independence.

Connection between DDP and mutual information

The approach is based on the popular information-theoretic measure: mutual information. To
see its relevancy clearly, let us make a concrete connection. The connection is made via the
following observation:

DDP = 0 : Ỹ⊥Z ⇐⇒ I(Z; Ỹ ) = 0. (10)

This is because I(Z; Ỹ ) = 0 is the sufficient and necessary condition for the independence
between Z and Ỹ . The connection can also be made via the soft-decision prediction Ŷ . Notice
that

I(Z; Ỹ ) ≤ I(Z; Ỹ , Ŷ ) = I(Z; Ŷ ) (11)

where the 1st inequality comes from the chain rule I(Z; Ỹ , Ŷ ) = I(Z; Ỹ ) + I(Z; Ŷ |Ỹ ) and the
non-negativity of mutual information; and the 2nd equality is due to the fact that Ỹ is a function
of Ŷ (Ỹ := 1{Ŷ ≥ τ}) and hence I(Z; Ỹ |Ŷ ) = 0. This together with (10) yields:

DDP = 0 : Ỹ⊥Z ⇐= I(Z; Ŷ ) = 0. (12)

We see that I(Z; Ŷ ) = 0 can serve as a strong constraint for the independence.

MI-based approach [9]

The connection (12) naturally motivates us to employ λ · I(Z; Ŷ ) as a regularization term in (9)
instead of λ · DDP:

min
w

1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · I(Z; Ŷ ). (13)

Now a question of interest is: How to express I(Z; Ŷ ) in terms of the optimization variable w?
It turns out there is an interesting way to do this. To figure out the way, let us massage I(Z; Ŷ )
to arrive at the expression.

A careful look at mutual information
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Starting with the definition of mutual information, we get:

I(Z; Ŷ ) = H(Z)−H(Z|Ŷ )

(a)
= H(Z)− (H(Ŷ , Z)−H(Ŷ ))

(b)
= H(Z)− E

[
log

1

PŶ ,Z(Ŷ , Z)

]
+ E

[
log

1

PŶ (Ŷ )

]

= H(Z) +
∑
ŷ,z

PŶ ,Z(ŷ, z) log
PŶ ,Z(ŷ, z)

PŶ (ŷ)

(14)

where (a) comes from the chain rule H(Ŷ , Z) = H(Ŷ )+H(Z|Ŷ ); and (b) is due to the definitions
of entropy and joint entropy. Define the term placed in the last line marked in blue as:

D∗(ŷ; z) :=
PŶ ,Z(ŷ, z)

PŶ (ŷ)
. (15)

Due to the total probability law, D∗(ŷ; z) should respect the sum-up-to-one constraint w.r.t. z:∑
z

D∗(ŷ; z) = 1 ∀ŷ. (16)

Mutual information via function optimization

Instead of D∗(ŷ; z), one can think about another function, say D(ŷ; z), which respects only the
sum-up-to-one constraint (16). It turns out D∗(ŷ; z) is the optimal choice among such D(ŷ; z)
in a sense of maximizing: ∑

ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ; z), (17)

and this gives insights into expressing I(Z; Ŷ ) in terms of w. To see this clearly, let me formally
state that D∗(ŷ; z) is indeed the maximizer via the following theorem.

Theorem: The mutual information I(Z; Ŷ ), expressed as in the last line of (14), can be repre-
sented as the following function optimization:

I(Z; Ŷ ) = H(Z) + max
D(ŷ;z):

∑
z D(ŷ;z)=1

∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ; z). (18)

The proof of this is simple. Notice that the optimization (18) is convex in D(·, ·), since the log
function is concave and the convexity preserves under addition. Hence, by checking the KKT
condition (the optimality condition for convex optimization), one can prove that the optimal
D(·, ·) indeed respects (15) and (16). Here is detail. Consider the Lagrange function:

L(D(ŷ; z), ν(ŷ)) =
∑
ŷ,z

PŶ ,Z(ŷ, z) logD(ŷ; z) +
∑
ŷ

ν(ŷ)

(
1−

∑
z

D(ŷ; z)

)
(19)

where ν(ŷ)’s indicate Lagrange multipliers w.r.t. the equality constraints. Consider the KKT
conditions:

dL(D(ŷ; z), ν(ŷ))

dD(ŷ; z)

∣∣∣∣
D=Dopt,ν=νopt

=
PŶ ,Z(ŷ, z)

Dopt(ŷ; z)
− νopt(ŷ) = 0; (20)∑

z

Dopt(ŷ; z) = 1. (21)
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So we get Dopt(ŷ; z) =
PŶ ,Z(ŷ,z)
νopt(ŷ)

. Plugging this into (21), we obtain:

∑
z

Dopt(ŷ; z) =

∑
z PŶ ,Z(ŷ, z)

νopt(ŷ)
= 1, (22)

which together with total probability law yields:

νopt(ŷ) =
∑
z

PŶ ,Z(ŷ, z) = PŶ (ŷ). (23)

This together with (20) then gives:

Dopt(ŷ; z) =
PŶ ,Z(ŷ, z)

νopt(ŷ)
=

PŶ ,Z(ŷ, z)

PŶ (ŷ)
= D∗(ŷ; z). (24)

This completes the proof of the theorem.

How to express I(Z; Ŷ ) in terms of w?

Are we done with expressing I(Z; Ŷ ) in terms of w? No. This is because PŶ ,Z(ŷ, z) that appears
in (18) is not available. To resolve this issue, we rely upon the empirical distribution instead:

QŶ ,Z(ŷ(i), z(i)) =
1

m
∀i ∈ {1, . . . ,m}.

In practice, the empirical distribution is very likely to be uniform, since ŷ(i) is real-valued and
hence the pair (ŷ(i), z(i)) is unique with high probability. Now by parametrizing the function
D(·, ·) with another, say θ, we can approximate I(Z; Ŷ ) as:

I(Z; Ŷ ) ≈ H(Z) + max
θ:
∑
z Dθ(ŷ;z)=1

m∑
i=1

1

m
logDθ(ŷ

(i); z(i)). (25)

From the above parameterization building upon the function optimization (18), we can now
approximately express I(Z; Ŷ ) in terms of (w, θ).

Implementable optimization

Notice in (25) that H(Z) is irrelevant to the introduced optimization variables (w, θ). Hence,
the MI-based optimization (13) can be (approximately) translated into:

min
w

max
θ:
∑
z Dθ(ŷ;z)=1

1

m

{
m∑
i=1

(1− λ)`CE(y(i), ŷ(i)) + λ
m∑
i=1

logDθ(ŷ
(i); z(i))

}
. (26)

The objective function is a function of (w, θ) and hence it is implementable, for instance, via
famous neural networks. Many of the neural-net-based optimizations can readily be solved via a
family of gradient descent algorithms. But here we see “min max”. Hence, we can apply a slight
variant of gradient descent that people often call alternating gradient descent, in which given w,
θ is updated via the inner optimization and then given the updated θ, w is newly updated via
the outer optimization, and this process iterates until it converges.

The architecture of the MI-based optimization (26) is illustrated in Fig. 6. On top of a classifier,
we introduce a new entity, called discriminator, which corresponds to the inner optimization. In
discriminator, we wish to find θ∗ that maximizes 1

m

∑m
i=1 logDθ(ŷ

(i); z(i)). On the other hand,
the classifier wants to minimize such term. Hence, Dθ(ŷ; z) can be viewed as the ability to
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Figure 6: The architecture of the MI-based fair classifier (26). The prediction output ŷ is fed into
the discriminator wherein the goal is to figure out sensitive attribute z from ŷ. The discriminator
output Dθ(ŷ; z) can be interpreted as the probability that ŷ belongs to the attribute z. Here
the softmax function is applied to ensure the sum-up-to-one constraint (16).

figure out z from prediction ŷ. Notice that the classifier wishes to minimize such ability for the
purpose of fairness, while the discriminator has the opposite goal. So one natural interpretation
that can be made on Dθ(ŷ; z) is that it captures the probability that z is indeed the ground-
truth sensitive attribute for ŷ. Here the softmax function is applied to ensure the sum-up-to-one
constraint (16).

Analogy with GAN [15]

Since the classifier and the discriminator are competing, one can make an analogy with a famous
generative model: Generative Adversarial Networks (GANs), in which the generator and the
discriminator also compete as in a two-player game. While the fair classifier and GANs bear
strong similarity in their nature, these two are distinct in their roles. See Fig. 7 for the detailed
distinctions. TN1_7

MI-based fair classifier

classifier

GAN

generator

discriminator discriminator

Goal: Distinguish real samples

from fake ones. 

Figure out sensitive attribute 

from prediction 

Generate realistic fake samplesDecrease the ability to figure 

out senstivie attribute for the 

purpose of fairness

Figure 7: MI-based fair classifier vs. GAN. Both bear similarity in structure (as illustrated in
Fig. 6), yet distinctions in their roles.

Extension to another fairness measure DEO

So far we have focused on one fairness measure DDP. One can also apply almost the same trick
to another measure DEO:

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|. (27)
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Specifically one can make a similar connection like:

DEO = 0 : Ỹ⊥Z|Y ⇐= I(Z; Ŷ |Y ) = 0. (28)

This then leads to an implementable optimization:

min
w

max
θ:
∑
z Dθ(ŷ;z,y)=1

1

m

{
m∑
i=1

(1− λ)`CE(y(i), ŷ(i)) + λ

m∑
i=1

logDθ(ŷ
(i); z(i), y(i))

}
. (29)

Here the only distinction is that we read Dθ(ŷ; z, y) instead of Dθ(ŷ; z).

Experiments

We provide experimental results to demonstrate that the MI-based fair classifier offers a good
fairness performance. For illustrative purpose, we focus on a single yet popular benchmark real
data: COMPAS [16]. Also we consider only one baseline: a non-fair classifier which does not
incorporate any fairness-regularized term. For a sensitive attribute, we consider a race type
(white vs. black), so Z is binary. In COMPAS, X contains prior criminal records, e.g., felony
or misdemeanour and Y denotes whether or not an associated individual reoffends within two
years.

Fig. 8 exhibits accuracy-vs-DDP tradeoff performances for the non-fair and MI-based fair classi-
fiers. Notice that the fair classifier yields a significant fairness performance (reflected in a small
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Figure 8: Accuracy-vs-DDP tradeoff. The MI-based fair classifier improves DDP significantly
with a marginal degradation of accuracy.

DDP) with a negligible performance degradation in prediction accuracy.

A challenge

While it offers a great tradeoff performance, it comes with a challenge. The challenge is that
the min max structure in the MI-based optimization (26) may lead to training instability. The
training instability problem indeed occurs. The problem is particularly significant when λ is
around 1. See Fig. 9. Here each point represents a performance evaluated on a single seed in
training. We see different points spread over a wide range of DDP, implying an unstable training
performance.

Look ahead

There has been a recent work [11] that addresses the training instability while offering a better
tradeoff. It is based on a prominent statistical method often employed by information theorists:
kernel density estimation (KDE). Next lecture, we will explore the KDE-based fair classifier.
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DDP

fairness tuning knob

MI-based fair classifier

Figure 9: DDP as a function of the fairness tuning knob λ. Each blue dot corresponds to a
single result w.r.t. one particular seed for training. The spreadness of the blue dots in particular
near λ ≈ 1 implies that the min max optimization framework (26) yields different results with
distinct seeds, thereby incurring training instability.
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