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A fair classifier
using kernel density estimation

Reading: TN2



Recap: Trustworthy Al

focus of this tutorial

fairness robustness

explainability value transparency
alignment




Recap: Fair classifiers

Focused on group fairness.
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Recap: Fairness-regularized optimization
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Studied another approach which employs a different
regularization term:
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Recap: Ml-based optimization
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Recap: Ml-based optimization

m

1 e - ). (i
min max — {Z(l — )\)ECE(y(z), g)(z)) + A Zlog Dy (gj(z); z(z))}

w Q: Dg(y;:2)=1MTM
>, Do(952) P —

Yields a good tradeoff performance, yet suffering from
training instability (due to “min-max” structure)

Claimed: There Is another fair classifier that
addresses training instability while offering a
better tradeoff.



Today’s lecture

Will study the new fair classifier in depth.

1. Explore a way to directly compute the fairness
measure DDP.

2. Introduce a trick that allows us to well approximate

DDP:
Kernel Density Estimation (KDE)

3. Formulate a KDE-based optimization for a fair
classifier.

4. Study how to solve the optimization.



Revisit: the fairness measure DDP

o~

DDP:= ) [P(Y =1|Z =2) - P(Y = 1)
ZEZ
Let’s try to compute this directly.

First focus on:

P(Y =1)=P( > 1) Y :=1{Y > 7}
™~ pdf uknown!
Instead: We are given samples {g’)(l), e ,Q(m)}

Question: A way to infer the pdf from samples?



Kernel density estimation (KDE)

a smoothing parameter  a kernel function
(e.g., Gaussian kernel)




Accuracy of KDE?

t_yf‘(’i))
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mt

Interested r.v.
- Yields an inaccurate estimate under high-dim. settings

Good news: In our setting, d =1
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Approximation via KDE
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Approximation via KDE
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Remember: DDP := Y [P(Y =1|Z =2) —P(Y = 1)
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Similarly, one can obtain:
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Approximated DDP
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Approximated DDP

DDP:= ) [P(Y =1|Z =
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Can express DDP in terms of samples (thus w) »



KDE-based optimization  cho-Hwang-Suh NeurlPS20

Algorithm: Gradient descent

Issues: How to deal with the absolute function?

How to choose the smoothing parameter h?
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How to deal with the absolution func?

Instead, one can employ Huber loss:

Hs(z) = -x if || <6

s

1
O (x| — =0 otherwise
2

This enables us to readily obtain gradient.
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How to choose the smoothing parameter h?

Turns out:

There Is a sweet spot for A that miminizes the mean
sqguare error of KDE estimate.

Advise us to find ~A™ that minimizes the MSE.

See [Cho-Hwang-Suh NeurlPS20] for detalls.
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Extension to another fairness measure DEO

DEO =Y Y [P(Y =1]Y =y, Z =2) - P(Y = 1|Y =y)|

yey zezZ
~Y Y PY =1Y =y,Z=2)—PY =1Y =y)|
YeEY z€Z
r—(i)y2 ()32
%ZZ ! Zle_( 23:12) —Lzle_( 23:12)
My 2 My, - 2
yey 22 | V7 iel,. Y iel,

.
I, {i:yW =9, 29 =2}

18



Experiments

A benmark real dataset;: COMPAS

(z,2,y)
]

criminal records

black or white

reoffend or not
IN near future
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Training stability?

D[t?zPﬁ f‘ . MIl-based fair classifier
RN B
0.20 . ’ i ; -

KDE-based approach offers training stability!

® ° -
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fairness tuning knob A
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Accuracy vs DDP tradeoff

Accuracy DDP
Non-fair classifier|  68.29 -+ 0.44 0.2263 + 0.0087
MI-based 67.07 = 0.85 0.0522 + 0.0373
fair classifier
KDE-based 67.00 +0.45 | 0.0374 = 0.0079

fair classifier
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Accuracy vs DDP tradeoff

DDP t
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o e o KDE-based fair classifier
0.660 0.665 0.670 0.675 0.680

prediction accuracy
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Summary of Lectures 1 and 2

1. Explored fairness measures in fair classifiers.

2. Studied an MI-based fair classifier which yields a
good tradeoff while suffering from training instabllity.

3. Investigated another fair classifer based on KDE,
which addresses training instability.
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Revisit: Five aspects for trustworthy Al

A recent progress: Roh-Lee-Whang-Suh, ICML20

fairness robustness

explainability

value
alignment

transparency
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Look ahead

Will explore the recent work on fairness &
robustness, and discuss some relative issues.
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Extension to a non-binary classifier

\

(X,Z) —| classifier L.y <R3
w
T {020y,

P~ P~

DDP:= > > [P(Y =y|Z =2)—P(Y =y)
ye)y zezZ

P(Y =1)=P(Y; > Y,,Y; > Y3) (original hard decision)

Turns out: DDP is not differentiable under the
original hard decision. ”



A proposed approach

\

(X,7Z) —| classifier .y cR3
w
T {0,200,

P~ P~

DDP:= > > [P(Y =y|Z =2)—P(Y =y)
ye)y zezZ

~

P(Viroposed = 1) = P(Y; > 0.5) P(Y =1) =P(¥; > Y5, V7 > V3)

Turns out: DDP is differentiable in this case.
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