
Croucher Summer Course in Information Theory August 25, 2021
CUHK, August 23 ∼ 27, 2021 Changho Suh (chsuh@kaist.ac.kr)

Lecture 2: A fair classifier using kernel density estimation

Recap

At the beginning of the last lecture, I mentioned that trustworthy AI is a new and trending
topic that we are going to touch upon in this tutorial. And I told you that among several
aspects that can represent trustworthy AI, the following two are of this tutorial’s focus: (i)
fairness (targeting unbiased decisions among different demographics and/or individuals); and
(ii) robustness (pursuing an interested model being robust to data poisoning). In particular,
we aimed to explore the two issues in the context of classifiers with a particular emphasis on
one prominent fairness concept, called group fairness, aiming for irrelevancy of predictions to
sensitive attributes such as race, gender, age and religion. We then introduced two fairness
measures that quantify the degree of group fairness. The first is DDP which promotes the
independence between sensitive attribute Z and prediction Ỹ (made in hard decision):

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (1)

The second is DEO which pursues still the independence yet conditioned on label Y :

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|. (2)

It turns out that DEO is more preferably employed in practice, as it can gracefully go with
prediction accuracy. Remember that enforcing the DP condition may significantly aggravate
predication accuracy especially when ground-truth label distribution is quite asymmetric, while
enforcing the EO condition may not necessarily do so.

Next we formulated an optimization problem that incorporates a fairness measure as a regular-
ization term. For instance, in the case of DDP, it reads:

min
w

1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · DDP. (3)

In order to overcome the challenge that DDP is a complicated function of an optimization variable
w, we studied another approach that takes a proxy for DDP. The proxy was mutual information
between Z and Ŷ , and it was inspired by the interesting connection: I(Z; Ŷ) =⇒ DDP = 0. So
the MI-based optimization was:

min
w

1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) + λ · I(Z; Ŷ). (4)

And then we could express I(Z; Ŷ) in terms of w via the following approximation:

I(Z; Ŷ) ≈ H(Z) + max
D(ŷ;z):

∑
z D(ŷ;z)=1

m∑
i=1

1

m
logD(ŷ(i); z(i)) (5)

1

where m denotes the number of examples. By parameterizing the function D(·; ·) with another
neural-net weight, say θ, and using the fact that H(Z) is irrelevant to (w, θ), we could arrive at:

min
w

max
θ:
∑
z Dθ(ŷ;z)=1

1

m

{
m∑
i=1

(1− λ)`CE(y(i), ŷ(i)) + λ

m∑
i=1

logDθ(ŷ
(i); z(i))

}
. (6)

At the end of the last lecture, we observed some experimental results which demonstrated a
good accuracy-DDP tradeoff performance, yet exhibiting training instability (a wide range of
different results over distinct seeds in training). The key rationale behind training instability is
due to the “min max” structure of the optimization that often suffers from training instability.
I then claimed that there is another fair classifier [2] that addresses training instability while
offering a better tradeoff. This forms the content of today’s lecture.

Today’s lecture

Today we will study the new fair classifier in depth. Specifically what we are going to do are four
folded. First we will explore a way to directly compute the fairness measure DDP, instead of
employing mutual information. We will then introduce a trick that allows us to well approximate
DDP. The trick is based on a well-known statistical method prevalent in information theory
and statistics, named Kernel Density Estimation (KDE). Next we will develop a KDE-based
optimization for a fair classifier. Lastly we will study how to solve the optimization.

Revisit: the fairness measure DDP

In an effort to address the training instability problem, let us start from the beginning, observing
the fairness measure DDP again:

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|. (7)

There are two important probabilities for each absolute function that constitutes the summation.
Let us first focus on the second probability of a simpler form and try to compute the probability
in a direct manner (without relying upon other measures like mutual information):

P(Ỹ = 1) = P(Ŷ ≥ τ) =

∫ ∞
τ

fŶ (t)dt (8)

where the 1st equality is due to Ỹ := 1{Ŷ ≥ τ}. Here fŶ (t) denotes the probability density

function (pdf) of Ŷ . An issue occurs in computing this probability. The issue is that the pdf
fŶ (t) is unknown. Instead, we are given only samples {ŷ(1), . . . , ŷ(m)}. A natural question arises.
Is there a way to infer the pdf only from such samples?

Kernel density estimation

It turns out kernel density estimation (KDE) comes to rescue. To see this clearly, let us first
figure out what the KDE is. Given samples {ŷ(1), . . . , ŷ(m)}, the KDE is defined as:

f̂Ŷ (t) :=
1

mh

m∑
i=1

fker

(
t− ŷ(i)

h

)
(9)

where fker(·) indicates a kernel function (e.g., Gaussian kernel fker(t) = 1√
2π
e−

1
2
t2) and h denotes

a parameter called a smoothing parameter subject to our design choice. The rationale behind

2

the naming is that it turns out its magnitude affects the smoothness of the estimated pdf curve
f̂Ŷ (t).

Here one crucial thing to worry about is accuracy of the KDE. How accurate is the KDE in
particular w.r.t. the number m of samples? There have been lots of works on analyzing the
scaling behavior of the difference between the ground-truth pdf and its KDE estimate. One
recent analysis is due to Jiang [3] who showed that∣∣∣f̂(t)− f(t)

∣∣∣
∞

.
1

m
1
d

(10)

where d is the dimension of an interested random variable. This suggests that m should grow
exponentially in the dimension d for ensuring fast enough convergence to the ground-truth pdf.
The estimate may not be accurate under high-dimensional settings. Actually this is one of the
main reasons as to why the KDE is not heavily employed for many high-dimensional applications.
However, a good news comes in the classifier setting that we focus on herein. The good news
is that d = 1 in our setting; hence, the approximation via KDE is moderately good even for a
not-super-large value of m.

Approximation via KDE

The observation (10) naturally motivates us to approximate (8) via KDE. Specifically we employ
a Gaussian kernel function:

fker(t) =
1√
2π
e−

1
2
t2 ∀t ∈ R. (11)

Plugging the KDE-approximated pdf f̂Ŷ (t) into (8) in place of fŶ (t), we obtain:

P̂(Ỹ = 1) =

∫ ∞
τ

f̂Ŷ (t)dt

(a)
=

∫ ∞
τ

1

mh

m∑
i=1

fker

(
t− ŷ(i)

h

)
dt

(b)
=

1

m

m∑
i=1

∫ ∞
τ−ŷ(i)
h

fker (y) dy

(c)
=

1

m

m∑
i=1

Q

(
τ − ŷ(i)

h

)
(12)

where (a) comes from the use of KDE (9); (b) is due to the change of variable y := t−ŷ(i)
h ; and

(c) is because we employ the Q-function: Q(z) :=
∫∞
z

1√
2π
e−

1
2
t2dt.

Remember in the definition (7) of DDP that we have another probability P(Ỹ = 1|Z = z) inside
the summation. Applying the same trick, one can obtain:

P̂(Ỹ = 1|Z = z) =
1

mz

∑
i∈Iz

Q

(
τ − ŷ(i)

h

)
(13)

where Iz := {i : z(i) = z} and mz := |Iz|. Here the only distinction is that we concern only
samples subject to z(i) = z. The derivation is not that difficult. Please check it if you are not
convinced.

Approximated DDP

3

We are now ready to approximate DDP (7). Applying (12) and (13) into (7) instead of the
ground-truth probabilities, we get:

DDP :=
∑
z∈Z
|P(Ỹ = 1|Z = z)− P(Ỹ = 1)|

≈
∑
z∈Z
|P̂(Ỹ = 1|Z = z)− P̂(Ỹ = 1)|

=
∑
z∈Z

∣∣∣∣∣ 1

mz

∑
i∈Iz

Q

(
τ − ŷ(i)

h

)
− 1

m

m∑
i=1

Q

(
τ − ŷ(i)

h

)∣∣∣∣∣
≈
∑
z∈Z

∣∣∣∣∣ 1

mz

∑
i∈Iz

1

2
e−

(τ−ŷ(i))2

2h2 − 1

m

m∑
i=1

1

2
e−

(τ−ŷ(i))2

2h2

∣∣∣∣∣

(14)

where the approximation in the last step follows from the well-known approximation of the

Q-function: Q(x) ≈ 1
2e
−x

2

2 , x ≥ 0. For x < 0, one can use a different approximation Q(x) ≈

1− 1
2e
−x

2

2 . For illustrative purpose, here we employ the expression only when the arguments are

non-negative. Notice that DDP is now an explicit function of the samples ŷ(i)’s and therefore it
can well be expressed in terms of the classifier parameter w.

KDE-based optimization [2]

Employing the approximated DDP (14) in the fairness-regularized optimization, we obtain:

min
w

1− λ
m

m∑
i=1

`CE(y(i), ŷ(i)) +
λ

m
·
∑
z∈Z

∣∣∣∣∣ mmz

∑
i∈Iz

1

2
e−

(τ−ŷ(i))2

2h2 −
m∑
i=1

1

2
e−

(τ−ŷ(i))2

2h2

∣∣∣∣∣ (15)

where 0 ≤ λ ≤ 1 indicates a regularization factor that we interpret as the fairness tuning knob.
Since it is well expressed in terms of w, one can resort to a famous gradient descent algorithm to
solve the optimization. However, there are some issues in solving the optimization. Two issues.
One is how to deal with the absolute function that leads to non-differentiability. The second is
how to choose the smoothing parameter h.

To resolve the first issue, one can employ Huber loss instead of the absolute function:

Hδ(x) =

{
1
2x

2, if |x| ≤ δ;
δ
(
|x| − 1

2δ
)
, otherwise.

(16)

Notice that when x is around 0, the function is indeed differentiable while respecting the original
linear behavior when x is apart from 0. This then enables us to readily obtain gradient.

Regarding the second issue, it turns out there is a sweet spot on h in light of the mean square
error of KDE estimate. This advises us to find h∗ that minimizes the mean square error. The
computation of h∗ is involved and hence we omit the detailed derivation in this tutorial; see the
supplementary in [2] if you are interested in the detail.

Extension to another fairness measure DEO

Similarly one can apply the same KDE trick to another fairness measure DEO, thus approxi-

4

mating it as:

DEO :=
∑
y∈Y

∑
z∈Z
|P(Ỹ = 1|Y = y, Z = z)− P(Ỹ = 1|Y = y)|

≈
∑
y∈Y

∑
z∈Z
|P̂(Ỹ = 1|Y = y, Z = z)− P̂(Ỹ = 1|Y = y)|

≈
∑
y∈Y

∑
z∈Z

∣∣∣∣∣∣ 1

myz

∑
i∈Iyz

1

2
e−

(τ−ŷ(i))2

2h2 − 1

my

∑
i∈Iy

1

2
e−

(τ−ŷ(i))2

2h2

∣∣∣∣∣∣
(17)

where Iyz := {i : y(i) = y, z(i) = z} and myz := |Iyz|. Here the only distinctions are on the
summations inside the absolute function. We aggregate associated probabilities only for the
samples subject to {y(i) = y, z(i) = z} or {y(i) = y}.

Experiments

We provide experimental results for two classifiers (MI-based and KDE-based fair classifiers) to
demonstrate that the KDE-based fair classifier offers training stability while yielding a better
accuracy-vs-DDP tradeoff. We consider the same benchmark real dataset: COMPAS [4]. Fig. 1TN2_1

DDP

fairness tuning knob

KDE-based fair classifier

MI-based fair classifier

Figure 1: DDP as a function of the fairness tuning knob λ for two approaches: (blue) MI-based
fair classifier; (green) KDE-based fair classifier. Each blue-or-green dot corresponds to a single
result w.r.t. one particular seed for training. While the blue dots are quite spread near λ ≈ 1,
the green dots are more concentrated, thus offering training stability. The case of λ ≈ 1 is also
a practically-relevant regime especially when putting a strong emphasis on fairness.

plots the DDP performance as a function of the fairness tuning knob λ for the two classifiers.
Notice that the green dots are more concentrated relative to the blue dots, thus offering training
stability.

Accuracy vs DDP tradeoff

We also provide accuracy-vs-DDP tradeoff performances for the two classifiers in Figs. 2 and 3.
Unlike the setting in Fig. 1, here each dot corresponds to the average result over five trials of
training with distinct seeds. We see that the KDE-based fair classifier offers a greater tradeoff
as well. Actually it is not 100% obvious why the KDE-based fair classifier outperforms the

5

MI-based one although it directly computes DDP. This is because the KDE approach allows us
to only approximate DDP (not exactly). Unfortunately, there is no theoretical proof for that.
So you can just consider this as sort of an experimental support.

TN2_3

Accuracy DDP

Non-fair classifier

MI-based

fair classifier

KDE-based

fair classifier

Figure 2: Accuracy vs DDP tradeoff performances for three approaches: non-fair classifier; (blue)
MI-based fair classifier; and (green) KDE-based fair classifier.

TN2_2

prediction accuracy

DDP

KDE-based fair classifier

MI-based fair classifier

Figure 3: Accuracy vs DDP tradeoff performances for two approaches: (blue) MI-based fair
classifier; (green) KDE-based fair classifier. Here each dot represents the average over five trials
of training with different seeds. The KDE-based fair classifier yields a greater tradeoff.

Summary of Lectures 1 and 2

So far we have explored fairness issues that arise in the context of classifiers. Specifically we
investigated two major fairness measures: DDP and DEO. We then made an interesting connec-
tion between the fairness measures and mutual information (MI). Building upon the connection,
we next investigated an MI-based fair classifier which offers a good tradeoff yet suffering from
training instability. Finally we studied another fair classifier based on KDE, which addresses
the training instability issue.

Look ahead

Now what is next? To introduce the last content, let us first revisit the five aspects which I

6

emphasized in the Monday morning in Lecture 1 as the requirements for enabling trustworthy AI.
See Fig. 4 again. We have four remaining aspects not explored yet: robustness; explainability;

TN6_1

robustness

value

alignment
transparency

fairness

explainability

A recent progress: Roh-Lee-Whang-Suh, ICML20

Figure 4: Revisit the five aspects for enabling trustworthy AI. A recent progress was made
towards addressing both fair and robust training.

value alignment; and transparency. The last content is relevant to one recent progress that
we made towards addressing both fairness and robustness issues [5]. So next time, we will
explore the recent work on fairness & robustness, and discuss some The key rationale behind
training instability is that mutual information I(Z; Ŷ) is represented as “max” optimization,
thus incurring the “min max” structure that often suffers from training instability.

Supplement

We have thus far focused on the binary classifier. So you may wonder how to extend the KDE
approach into non-binary classifiers. Here we illustrate a rough idea for extension via a ternary
classification case where the prediction Ŷ ∈ R3. In this case, the original hard decision method
yields:

P(Ỹ = 1) = P(Ŷ1 > Ŷ2, Ŷ1 > Ŷ3). (18)

Notice that this requires the knowledge of the joint probability PŶ1,Ŷ2,Ŷ3 , so it needs a much
larger number m of examples for ensuring a good enough estimate of the joint probability of
the three-dimensional random vector. Even worse, it turns out this hard decision method incurs
non-differentiability of DDP, which prevents the use of gradient descent algorithms.

Hence, the work in [2] proposes another hard-decision method which defines the probability as:

P(Ỹproposed = 1) := P(Ŷ1 > 0.5). (19)

Notice that this requires the knowledge only for PY1 ; and therefore it needs roughly the same
order of m (as in the binary case) required for a good estimate. Even better, this way, we
can ensure differentiability of DDP. In fact, P(Ỹproposed = 1) is a lower bound of P(Ỹ = 1), as

the event {Ŷ1 > 0.5} implies {Ŷ1 > Ŷ2, Ŷ1 > Ŷ3}. We could demonstrate via experiments that
we offer a good tradeoff performance even with the lower-bound-based KDE approximation,
although there is no theoretical analysis for this.

References

[1] J. Cho, G. Hwang and C. Suh. A fair classifier using mutual information. IEEE International Sypo-
sium on Inofrmation Theory (ISIT), 2020.

7

[2] J. Cho, G. Hwang and C. Suh. A fair classifier using kernel density estimation. In Advances in Neural
Information Processing Systems 33 (NeurIPS), 2020.

[3] H. Jiang. Uniform convergence rates for kernel density estimation. International Conference on
Machine Learning (ICML), 2017.

[4] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: There’s software
used across the country to 272 predict future criminals. And it’s biased against blacks.
https://www.propublica.org/article/machine-bias-risk-assessments-incriminal-sentencing, 2015.

[5] Y. Roh, K. Lee, S. E. Whang and C. Suh. FR-Train: A mutual information-based approach to
fair and robust training. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

8

