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Summary so far

2

Explored two prominent fairness measures:

DDP and DEO 

Studied one fair classifier based on mutual information.

Investigated another based on kernel density 

estimation.

1. 

2. 

3. 



Revisit: Five aspects for trustworthy AI

robustness

value 

alignment
transparency

fairness

explainability

A recent progress: Roh-Lee-Whang-Suh, ICML20
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Today’s lecture
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Will explore the recent work on fairness & robustness, 

and discuss other contexts (beyond classifiers). 

1. 

2. 

Figure out what it means by robustness in fair 

classifiers.

Conclude the tutorial.

Discuss other contexts such as fair recommender 

systems and fair ranking.

3.

4. 

Study a fair & robust classifier. 

5. 

Investigate experimental results.



Robustness in fair classifiers?

It means: ensuring negligible performance 

degradation due to data poisoning.
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Data poisoning: Any negative action applied to 

training data.

Example: Adding noisy perturbation either 

to label or to sensitive attribute

Performance metric: Accuracy-vs-fairness tradeoff



A challenge

Turns out: Accuracy-vs-fairness tradeoff is significantly 

worsen in the presence of data poisoning.

: original data
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Under an MI-based fair 

classifier and COMPAS

Consider 10% label flipping. 



A challenge

Turns out: Accuracy-vs-fairness tradeoff is significantly 

worsen in the presence of data poisoning.

: original data

: poisoned

Hence: Needs a fair classifier also being robust to 

data poisoning.
7

Under an MI-based fair 

classifier and COMPAS



Insights from the prior work

Turns out: Mutual information can also be 

instrumental in equipping the robustness aspect.
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Recall: MI-based optimization for a fair classifier



Idea for ensuring robustness
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Sanitize data                   indirectly:

By perturbing      while not changing 

so that acts as a clean data.



Issue in implementing the idea
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Sanitize data                   indirectly:

By perturbing      while not changing 

so that acts as a clean data.

Issue: We need clean validation data to compare with.

But clean data may be difficult to obtain 

especially when we target data poisoning 

scenarios. 

Idea:



Desired properties of validation dataset
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Sanitize data                   indirectly:

By perturbing      while not changing 

so that acts as a clean data.

Idea:

1. 

2. 

Clean

Small e.g., 5-10% relative to the original real data



How to use clean validation set?
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Want to make poisoned data indistinguishable from 

clean validation data.

Introduce a new random variable, say V, such that:

Sanitize data                   indirectly:

By perturbing      while not changing 

so that acts as a clean data.

Idea:



How to use clean validation set?
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→ Can be translated to 

Introduce a new random variable, say V, such that:

Sanitize data                   indirectly:

By perturbing      while not changing 

so that acts as a clean data.

Idea:



Optimization for a fair and robust classifier
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Question: How to implement?

[Roh-Lee-Whang-Suh, ICML20]:



MI via function optimization
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Remember:

[Roh-Lee-Whang-Suh, ICML20]:

Similarly:
paraterize w/

paraterize w/



Implementable optimization
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Algorithm: Alternating gradient descent



Architecture
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softmax

classifier
discriminator 

for fairness 

discriminator 

for robustness 



Experiments
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A benmark real dataset: COMPAS

black or white
criminal records

reoffend or not 

in near future



Recall: Worsen tradeoff due to poisoning
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original data
label-flip 10%

MI-based fair classifier



Fair and Robust (FR) classifier
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FR classifier

validation set size: 5%

tolerated upto ~1%

original data
label-flip 10%
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Other fairness contexts



Fair recommender systems
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Fairness means: Recommendation statistics is 

irrelevant to sensitive attributes of groups. 

Consider: STEM courses for women

An example in which fairness issue arises: 

Subject (course) recommendation

→ No or low rating (unfair)

How to address such unfairness?



Recent works on fair recommender systems
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[Beutel et al. SIGKDD2019]

[Mehrotra et al. CIKM2018]

[Xiao et al. RecSys2017]

[Yao-Huang NeurIPS2017] [Kamishima-Akaho RecSys2017]

[Li et al. arXiv2021]

Pursue:

Pursue:

Proposed particular ways to 

promote such independence.

If you are interested, you may want to try different 

ways to promote.

[Burke arXiv2017]



Fair ranking
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Fairness means: Top-ranked users from diverse groups

Example: Poster prizes

Suppose: Winners come only from a certain group 

→ Perhaps considered to be unfair



Recent works on fair ranking
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[Zehlike et al. CIKM2017]

[Singh et al. SIGKDD2018]

[Yadav et al. arXiv19]

[Narasimhan et al. AAAI2020]

If you pursue these research directions, the references 

might give you some guideline.

[Konstantinov et al. arXiv21]



A concluding remark
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Fairness becomes more crucial in many current & 

future applications.

Expect: Information-theoretic tools explored in this 

tutorial would help address many fairness-relevant 

issues. 
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FR classifier based on KDE?
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Recall the new variable V:

Instead of                       , one may want to minimize:                         

Issue:  KDE of                                         may not be 

accurate for moderate m.                             

Reason: Dimension of              is large!


