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A fair & robust classifier,
other fairness contexts

Reading: TN3



Summary so far

1.Explored two prominent fairness measures:
DDP and DEO

2.Studied one fair classifier based on mutual information.

3.Investigated another based on kernel density
estimation.



Revisit: Five aspects for trustworthy Al

A recent progress: Roh-Lee-Whang-Suh, ICML20

fairness robustness

explainability

value
alignment

transparency



Today’s lecture

Will explore the recent work on fairness & robustness,
and discuss other contexts (beyond classifiers).

1. Figure out what it means by robustness in fair
classifiers.

2. Study a fair & robust classifier.
3. Investigate experimental results.

4. Discuss other contexts such as fair recommender
systems and fair ranking.

5. Conclude the tutorial.



Robustness in fair classifiers?

It means: ensuring negligible performance
degradation due to data poisoning.

Performance metric: Accuracy-vs-fairness tradeoff
Data poisoning: Any negative action applied to
training data.

Example: Adding noisy perturbation either
to label or to sensitive attribute



A challenge

Turns out: Accuracy-vs-fairness tradeoff is significantly
worsen In the presence of data poisoning.
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A challenge

Turns out: Accuracy-vs-fairness tradeoff is significantly
worsen In the presence of data poisoning.

DDP | .
» | :original data
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I . classifier and COMPAS
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Hence: Needs a fair classifier also being robust to
data poisoning.



Insights from the prior work

Recall: Ml-based optimization for a fair classifier

1_
min ZECE @GN+ X I(Z,Y)

Turns out: Mutual information can also be
iInstrumental in equipping the robustness aspect.



ldea for ensuring robustness

Sanitize data (X, Z,Y) indirectly:
By perturbing ¥ while not changing (X, Z)

so that (X, Z,Y) acts as a clean data.




Issue in implementing the idea

ldea: Sanitize data (X, Z, f/) indirectly:
By perturbing ¥ while not changing (X, Z)

so that (X, Z,Y) acts as a clean data.

Issue: We need clean validation data to compare with.

But clean data may be difficult to obtain
especially when we target data poisoning

scenarios.
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Desired properties of validation dataset

ldea: Sanitize data (X, Z, f/) indirectly:
By perturbing ¥ while not changing (X, Z)

so that (X, Z,Y) acts as a clean data.

1. Clean

2. Small e.g., 5-10% relative to the original real data
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How to use clean validation set? {(z!/, 2\, y2)}ma

ldea: Sanitize data (X, Z, }N/) indirectly:
By perturbing ¥ while not changing (X, Z)

so that (X, Z,Y) acts as a clean data.

Introduce a new random variable, say V, such that:

(

o (XvathaIaK/al) it V=0.

Want to make poisoned data indistinguishable from
clean validation data.

\.
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How to use clean validation set? {(z!/, 2\, y2)}ma

ldea: Sanitize data (X, Z, }N/) indirectly:
By perturbing ¥ while not changing (X, Z)

so that (X, Z,Y) acts as a clean data.

Introduce a new random variable, say V, such that:

o (XvathaIaK/al) it V=0.

\.

-> Can be translated to I(V;X,Z,Y) =0
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Optimization for a fair and robust classifier

[Roh-Lee-Whang-Suh, ICML20]:

1— A — A — . )
min — 2 ey, g ) + A I(ZY) + Ao - IV

m

1=1

Question: How to implement?
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Ml via function optimization

[Roh-Lee-Whang-Suh, ICML20]:

~

1— X — X o N
min L ZECE(y(Z), 9 + - I(Z;

m .
1=1
Remember: .
N 1 _ .
I(Z;Y)~ H(Z) + max — log D(-;z)m; zm)
| D(9;2):) ., D(9;2)=1 ; m |
Similarly: paraterize w/
L Myal 1 . . ' .
I(\V: X, Z2,)Y)~ H(V)+ max loo D j(z)’ 2(@)’ —(1); ,U(’L)
( ) ( ) D(z,z,ywv):>_, D(%,2z,5;v)=1 — Myal & ( Y )

paraterize w/ ¢
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Implementable optimization

| =D =y — N?
S lee(y®, 5o
min max max 1 - 2 CE(ZJ v Y )

w 0:3°, Do(9;2)=1¢:3_, D¢ (Z,2,5;v)=

\o N
2.} " log Dy(29, 29, ;o)
=1

Myl i—

i = N
i § :1 D A1), (%)
_I_m - 0g Q(y ) % )—|_

Algorithm: Alternating gradient descent
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Architecture
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Experiments

A benmark real dataset;: COMPAS

(z,2,y)
]

criminal records

black or white

reoffend or not
IN near future
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Recall: Worsen tradeoff due to poisoning
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Fair and Robust (FR) classifier

e original data
DDR e label-flip 10% « FR classifier
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Other fairness contexts



Fair recommender systems

Y =1 (like) or 0 (dislike)
Fairness means: Recommendation statistics Is
Irrelevant to sensitive attributes of groups.

An example in which fairness issue arises:
Subject (course) recommendation

Consider: STEM courses for women

—> No or low rating (unfair)

How to address such unfairness?

22



Recent works on fair recommender systems

Pursue: }}J—Zitem
|

'Yao-Huang NeurlPS2017] [Kamishima-Akaho RecSys2017]
[Beutel et al. SIGKDD2019] [Li et al. arXiv2021]

[Mehrotra et al. CIKM2018] l _

Xiao et al. RecSys2017] Pursue: Y | Zuser

Burke arXiv2017]

Proposed particular ways to
promote such independence.

If you are interested, you may want to try different
ways to promote.
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Fair ranking

Fairness means: Top-ranked users from diverse groups

Example: Poster prizes
Suppose: Winners come only from a certain group

- Perhaps considered to be unfair
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Recent works on fair ranking

Narasimhan et al. AAAI2020]
Zehlike et al. CIKM2017]
Singh et al. SIGKDD2018]
'Yadav et al. arXiv19]

[Konstantinov et al. arXiv21]

If you pursue these research directions, the references
might give you some guideline.
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A concluding remark

Fairness becomes more crucial in many current &
future applications.

Expect: Information-theoretic tools explored in this
tutorial would help address many fairness-relevant

ISSuUes.
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FR classifier based on KDE?

Recall the new variable V:
x,2,v)=1 X2y i V=1,
(Xvala Lyal; K/al) it V=0.

\

Instead of I(V; X, Z,Y), one may want to minimize:

y:y:ynP(X:a:,Z:z,Y:mV:1)—P(X:x,Z:z,?:y|V:0)|

Issue: KDE of P(X =z,Z=2Y =y|V =1) may not be
accurate for moderate m.

Reason: Dimension of (X,Z,Y) is large!
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