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Overview & a fair classifier using
mutual information
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Trustworthy Al

Ml has significant potential to help solve
challenging problems, including by advancing
Go Ie medicine, understanding language, and fueling
g scientific discovery. To realize that potential,
| t 0s c rAlis usedand devélopdd
responsibly.o

NMoving forward, nbuil | c
suffice as an Al design paradigm. We must learn
how to build, evaluate and monitor for trust.o

.|||



Five aspects of trustworthy Al

focus of this tutorial

fairness robustness

explainability value transparency
alignment




A ML model o f t ht s t ut

Classifier!

Wil explore fairness & robustness issues that arise Iin
classifiers.



Outline of this tutorial

Lecture 1 (Today):
Figure out what it means by fairness in classifiers.
Study one fair classifier using mutual information.

Lecture 2 (Wed):

nvestigate another fair classifier that offers better
performance.

t employs a statistical technigue prevalent in
Information theory: Kernel Density Estimation (KDE)
Lecture 3 (Fri):

Explore another fair classifier also being robust to
data poisoning.




A fair classifier
using mutual information



Fairness in the context of classifiers?

There are many fairness concepts.

One important concept is group fairness:

Pursues predictions to exhibit similar statistics
regardless of sensitive attributes of groups

|

e.g., race, gender, age, religion, etc.



Applications of fair classifiers

e

job hiring parole decision ( )

Applicants want no A fair predictor for recidivism

discrimination depending ( ) score plays a crucial
on race or Ssex. role.
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Feldman et al. SIGKDD15

A falrness measure Zafar et al. AISTATS17

Y : class € {O 1} Y: prediction (hard decision)

no reoffend\ reoffend black Whlte

Z : sensitive attribute €.9.,€ Z = {O, 1}

Demographic Parity (DP) condition:
YI1Z: PY=1Z=2)=PY =1),Vz€ Z

A gquantifed measure: Difference btw two interested
probabilities in DP condition

DDP := ) [P(Y =1]|Z =2) - P(Y =1)
zEZ
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Limitation of DP condition

4 )
Demographlc Parity (DP) condition:

Y1Z: PV =1Z=2)=P(Y =1),Vz € 2
\ _J

Suppose that the ground-truth label dist. respects:
PY=1Z=1)>P(Y =1|Z =0)

Enforcing the DP condition may aggravate prediction
accuracy significantly.
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AnOther fail‘neSS n()ti()n Hardt-Price-Srebo NeurlPS16

Equalized Odds (EO) condition: }N/J_Z |Y A

PY=1Y=yZ=2))=PY =1Y =y) Ve Z,vyey

relevant to prediction accuracy

\_

Enforcing the EO condition has little to do with reducing
prediction accuracy.

A quantified measure:

~

DEO:= ) > [P(Y =1Y =y, Z =2) -P(Y = 1|Y = y)

yey zez
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Many recent works on fair classifiers

Here is only a partial list:

[Feldman et al. SIGKDD15] Zafar et al. AISTATS17]
Hardt-Price-Srebo NeurlPS16] [:Cho-Hwang-Suh |S|T20]]
Pleiss et al. NeurlPS17] [Roh-Lee-Whang-Suh ICML20]
[Zhang et al. AIES18] Cho-Hwang-Suh NeurlPS20]
[Donini et al. NeurlPS18] [Baharlouei et al. ICLR20]
[Agarwal et al. ICML18] Jiang et al. UAI20]
[Roh-Lee-Whang-Suh ICLR 21] Lee et al. arXiv 20]

employ mutual information
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Problem setting

\

(x,2) — classifier

prediction
(soft decision)

~ g —§=1j =7}

w
/T/
{(x(i)’ Z(i)’y(i))

normal data sens
(possibly non-sensitive)

hard decision

/ label

T, m: # of examples

1=

itive attribute € Z
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Problem setting

\

(x,2) — classifier |
w

N
Nag
|
-
—~—
N
AV
3
—

T {2,y

For illustrative purpose, this tutorial focuses on:
(1) binary classifier &
() one fairness measure:

~

DDP := ) |P(Y =1|Z =2) - P(Y =1)
zEZ
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Optimization

Conventional optimization for classifiers:

mm— ZECE @) ) )

cross entropy loss
—y log §™ — (1 — y™*)) log(1 — §*)

How to incorporate the fairness measure DDP?
DDP := > |P(Y =1|Z =2) —P(Y = 1)
zEZ
Observation: The smaller DDP, the more fair.
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Enforcing fairness via regularization

1 -\ o NN?
- (1) (0 .DDP
i =3 feely' . 5) +

where DDP := ) [P(Y =1|Z =2) - P(Y = 1)
zEZ

Challenge: DDP iIs a complicated function of the
optimization variable w.

Will study another approach which employs a
different regularization term.

It IS based on a connection between DDP and mutual
Information.
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Connection btw DDP & mutual information

KObservation:

DDP=0:Y1Z < > I(Z;Y)=0

_ 1(Z;Y) =0

ﬁf/:: 1{Y > 7}

~
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Ml-based approach

Cho-Hwang-Suh ISIT20

-

\_

Connection:

DDP=0:Y1Z < I(Z

Y)=0

\

ldea: Employ \ - I(Z' f/) (instead of A\ - DDP)

minl_ ZECE @), —I—/\'[I(Z;}A/)]

How to express it with w?
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A careful look at mutual information

[l 1
= H(Z)+E |log — | — E |log
L PY(Y) PY,Z(Ya Z)
Py (9, 2
= H(Z)+) Py 4(§.2)log ———
; v (9)
Yr2 & J/
v
=: D*(§;2) Y D*(§:2)
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Ml via function optimization

A Py Z(sz)
I(Z;Y)=H(Z)+ ) Py ,(i,2)log = B

Y,2 g }\/ry J

ZD*(Q, z)=1Vy =: D*(y; 2)

Theorem:

[(Z:Y)=H(Z)+

22



Proof of Theorem b2 := Y D*(j2) =1 Vj

Theorem: concave in D

I(Z:Y)=H(Z) + max P 2)log D
( ) (Z) D(@:2):5". D(§7)= Z yzy z)log D(y; 2)

yZ

Lagrange function:

L(D(;2),v(§)) = Z Py (3, 2)log D(i;2) + Z v (9) (1 — > D(j; z))
KKT condition: |

dL(D(y;2),v(9))
dD(§; z)

,Z(Qﬂ 2)

D=D qpt,V=Vopt DOPt(y; Z)

ZDopt(:&; Z) =1 \V/:LA/

— Vopt(g) =0 V:&a Z
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Proof of Theorem b ;2 := Py 0:%)

Y D*(gi2)=1Vj

Py (9)
Theorem:
[(Z:Y)=H(Z)+ max P, (7, 2)log D(§: 2
( ) (Z) D(3;2z):2., D(9;2)=1 yz; Y’Z( ) (4:2)
KKT condition:
dL(D(;2),v(H)) Py 2(9:%) : ,
- — — — Vo =0 ‘v/y, <
dD(7; z) D=Dopt,V=Vopt Dopt(7; 2) Vo (D) .
A N D ~ . ]P)?,Z(ya Z)
ZDopt(y; Z) =1 Vy — Opt(y7 Z) — Vopt(fg)
Po (1) P (4,
2. Y=ZA(y’ ?) =1 = Vopt(§) = Py (§) = Dopt(5; 2) = Y’?(g{ ) = D*(9); )
Vopt(y) Py(y)



How to express I(Z;Y)in terms of w?

Py (7, %) not available!

P SN ¢ NN () N

Rely on empirical distributions: Qy (3", 2"") —
. mo1 | |
I(Z;)Y)~ H(Z) + max — log D(4'V); 219

( ) (Z) D(:O:Z):ZzD(iO:Z)ﬂ;m s D )

irrelevant of (6, w) Parameterize D(-;-) with ¢
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Implementable optimization

How to solve?

Algorithm: Alternating gradient descent:
(i) Given w, update ¢ via the inner opt;
(i) Given the updated 6, update w via the outer opt;

(1) iterate this process until converge.
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Architecture

—1 classifier — ¢ — discriminator
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Interpretation on Dy(y; 2)

\ wax
(x, 2) —>D9(3J:§ 21)
—— classifier — ¢y —{ discriminator —:’De(y;zQ)
w 0 —"De(@;z|2|)
t/ /t
{(x(i)’z(i)’y(i)) m {Z(%) m

Observe: Discriminator wishes to maximize Dy(3®; (),
while classifier wishes to minimize.

Can interpret Dy(y; z) as the ability to figure out 2
from y.
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Analogy with GAN Goodfellow et al. NeurlPS14

Ml-based fair classifier GAN
discriminator discriminator
Figure out sensitive attribute | Goal: Distinguish real samples
from prediction from fake ones.
classifier generator

Decrease the ability to figure | Generate realistic fake samples
out senstivie attribute for the
purpose of fairness.
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Extension to another fairness measure DEO

4 _ N
Connection:

DEO=0:Y1Z|Y <— I(Z;Y|Y)=0
. y

Implementable optimization:

1 | & L
min - max '—{}:H—Aﬂwwmﬂwn+A§:bg&MW%%WM7}

w g Do(y:z,y)=1 TN
Zz B(yvzay) =1 G=1
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Experiments

A benchmark real dataset: COMPAS Angwin S o0X Z

(7, 2,y)
/ ‘ T~ reoffend or not

criminal records .. In near future
black or white
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